第15章材料力学优秀课件.ppt
第15章材料力学第1页,本讲稿共22页15-1 15-1 约束约束约束约束 虚位移虚位移虚位移虚位移 虚功虚功虚功虚功1 1 约束及其分类约束及其分类约束及其分类约束及其分类限制质点或质点系运动的条件称为约束,限制质点或质点系运动的条件称为约束,限制质点或质点系运动的条件称为约束,限制质点或质点系运动的条件称为约束,限制条件的数学方程称为约束方程。限制条件的数学方程称为约束方程。限制条件的数学方程称为约束方程。限制条件的数学方程称为约束方程。限制质点或质点系在空间的几何位置的条件称为几何约束。限制质点或质点系在空间的几何位置的条件称为几何约束。限制质点或质点系在空间的几何位置的条件称为几何约束。限制质点或质点系在空间的几何位置的条件称为几何约束。(11)几何约束和运动约束几何约束和运动约束几何约束和运动约束几何约束和运动约束如如如如第2页,本讲稿共22页第3页,本讲稿共22页限制质点系运动情况的运动学条件称限制质点系运动情况的运动学条件称限制质点系运动情况的运动学条件称限制质点系运动情况的运动学条件称运动约束。运动约束。运动约束。运动约束。第4页,本讲稿共22页2 2 定常约束和非定常约束定常约束和非定常约束定常约束和非定常约束定常约束和非定常约束约束条件随时间变化的称非定常约约束条件随时间变化的称非定常约约束条件随时间变化的称非定常约约束条件随时间变化的称非定常约束,否则称定常约束。束,否则称定常约束。束,否则称定常约束。束,否则称定常约束。第5页,本讲稿共22页(33)其它分类其它分类其它分类其它分类约束方程中包含坐标对时间的导数,且不可能积分或有限形式约束方程中包含坐标对时间的导数,且不可能积分或有限形式约束方程中包含坐标对时间的导数,且不可能积分或有限形式约束方程中包含坐标对时间的导数,且不可能积分或有限形式 的约束称的约束称的约束称的约束称非非非非完整约束完整约束完整约束完整约束,否则为,否则为,否则为,否则为完整约束。完整约束。完整约束。完整约束。约束方程是等式的,称约束方程是等式的,称约束方程是等式的,称约束方程是等式的,称双侧约束双侧约束双侧约束双侧约束(或称(或称(或称(或称固执约束固执约束固执约束固执约束),约束方程为不等式),约束方程为不等式),约束方程为不等式),约束方程为不等式的,称的,称的,称的,称单侧约束单侧约束单侧约束单侧约束(或称(或称(或称(或称非固执单侧约束非固执单侧约束非固执单侧约束非固执单侧约束)。本章只讨论定常的双侧、完整、)。本章只讨论定常的双侧、完整、)。本章只讨论定常的双侧、完整、)。本章只讨论定常的双侧、完整、几何约束;几何约束;几何约束;几何约束;n n 为质点系数为质点系数为质点系数为质点系数S S 为约束方程数为约束方程数为约束方程数为约束方程数第6页,本讲稿共22页2 2 虚位移虚位移虚位移虚位移 在某瞬时,质点系在约束允许的条件下,可能实现的任何无限小的位移在某瞬时,质点系在约束允许的条件下,可能实现的任何无限小的位移在某瞬时,质点系在约束允许的条件下,可能实现的任何无限小的位移在某瞬时,质点系在约束允许的条件下,可能实现的任何无限小的位移称为虚位移称为虚位移称为虚位移称为虚位移 。虚位移虚位移虚位移虚位移等等等等实位移实位移实位移实位移等等等等33虚功虚功虚功虚功 4 4 理想约束理想约束理想约束理想约束如果在质点系的任何虚位移中,所有约束力所作虚功的和等于零,称这种约如果在质点系的任何虚位移中,所有约束力所作虚功的和等于零,称这种约如果在质点系的任何虚位移中,所有约束力所作虚功的和等于零,称这种约如果在质点系的任何虚位移中,所有约束力所作虚功的和等于零,称这种约束为束为束为束为理想约束理想约束理想约束理想约束。力在虚位移中作的功称虚功。力在虚位移中作的功称虚功。力在虚位移中作的功称虚功。力在虚位移中作的功称虚功。第7页,本讲稿共22页设质点系处于平衡,有设质点系处于平衡,有设质点系处于平衡,有设质点系处于平衡,有即即即即或记为或记为或记为或记为此方程称此方程称此方程称此方程称虚功方程虚功方程虚功方程虚功方程,其表达的原理称,其表达的原理称,其表达的原理称,其表达的原理称虚位移原理虚位移原理虚位移原理虚位移原理或或或或虚功原理虚功原理虚功原理虚功原理:15-2 15-2 虚位移原理虚位移原理虚位移原理虚位移原理对于具有理想约束的质点系,其平衡的充分必要条件是:作用于质点系对于具有理想约束的质点系,其平衡的充分必要条件是:作用于质点系对于具有理想约束的质点系,其平衡的充分必要条件是:作用于质点系对于具有理想约束的质点系,其平衡的充分必要条件是:作用于质点系的所有主动力在任何虚位移中所作的虚功的和等于零。的所有主动力在任何虚位移中所作的虚功的和等于零。的所有主动力在任何虚位移中所作的虚功的和等于零。的所有主动力在任何虚位移中所作的虚功的和等于零。解析式为解析式为解析式为解析式为第8页,本讲稿共22页例例例例15-1 15-1 如图所示,在螺旋压榨机的手柄如图所示,在螺旋压榨机的手柄如图所示,在螺旋压榨机的手柄如图所示,在螺旋压榨机的手柄ABAB上作用一在水平面内的力偶上作用一在水平面内的力偶上作用一在水平面内的力偶上作用一在水平面内的力偶(),其力偶矩,其力偶矩,其力偶矩,其力偶矩 ,螺杆的导程为,螺杆的导程为,螺杆的导程为,螺杆的导程为 。求:机构平衡时加在被压物体上的力。求:机构平衡时加在被压物体上的力。求:机构平衡时加在被压物体上的力。求:机构平衡时加在被压物体上的力。第9页,本讲稿共22页解:给虚位移解:给虚位移解:给虚位移解:给虚位移满足如下关系:满足如下关系:满足如下关系:满足如下关系:,故,故,故,故第10页,本讲稿共22页例例例例15-215-2图中所示结构,各杆自重不计,在图中所示结构,各杆自重不计,在图中所示结构,各杆自重不计,在图中所示结构,各杆自重不计,在点作用一铅直向上的力点作用一铅直向上的力点作用一铅直向上的力点作用一铅直向上的力,求:支座求:支座求:支座求:支座的水平约束力。的水平约束力。的水平约束力。的水平约束力。第11页,本讲稿共22页解解解解:解除解除解除解除BB端水平约束端水平约束端水平约束端水平约束,以力以力以力以力 代替代替代替代替,如图如图如图如图(b)(b)带入虚功方程带入虚功方程带入虚功方程带入虚功方程 第12页,本讲稿共22页解得解得解得解得如图在如图在如图在如图在CGCG间加一弹簧,刚度间加一弹簧,刚度间加一弹簧,刚度间加一弹簧,刚度KK,且已有伸长量,且已有伸长量,且已有伸长量,且已有伸长量 ,仍求,仍求,仍求,仍求 。在弹簧处也代之在弹簧处也代之在弹簧处也代之在弹簧处也代之 以力,如图(以力,如图(以力,如图(以力,如图(b)b),其中,其中,其中,其中 第13页,本讲稿共22页例例例例15-315-3图所示椭圆规机构中,连杆图所示椭圆规机构中,连杆图所示椭圆规机构中,连杆图所示椭圆规机构中,连杆ABAB长为长为长为长为LL,滑块滑块滑块滑块,与杆重均不计,忽略各处摩擦,机构在图示位置平衡。与杆重均不计,忽略各处摩擦,机构在图示位置平衡。与杆重均不计,忽略各处摩擦,机构在图示位置平衡。与杆重均不计,忽略各处摩擦,机构在图示位置平衡。求:主动力求:主动力求:主动力求:主动力 之间的关系。之间的关系。之间的关系。之间的关系。第14页,本讲稿共22页解:解:解:解:(1)(1)给虚位移给虚位移给虚位移给虚位移代入虚功方程代入虚功方程代入虚功方程代入虚功方程,有有有有即即即即由由由由(在在在在A,BA,B连线上投影相等连线上投影相等连线上投影相等连线上投影相等)第15页,本讲稿共22页(2)(2)用解析法。建立坐标用解析法。建立坐标用解析法。建立坐标用解析法。建立坐标系系系系,由由由由有有有有得得得得第16页,本讲稿共22页代入到代入到代入到代入到由速度投影定理由速度投影定理由速度投影定理由速度投影定理,有有有有代入上式代入上式代入上式代入上式,得得得得(3)(3)虚速度法虚速度法虚速度法虚速度法定义定义定义定义:为虚速度为虚速度为虚速度为虚速度第17页,本讲稿共22页例例例例15-415-4如图所示机构,不计各构件自重与各处摩擦,求机构在图如图所示机构,不计各构件自重与各处摩擦,求机构在图如图所示机构,不计各构件自重与各处摩擦,求机构在图如图所示机构,不计各构件自重与各处摩擦,求机构在图示位置平衡时,主动力偶矩示位置平衡时,主动力偶矩示位置平衡时,主动力偶矩示位置平衡时,主动力偶矩与主动力与主动力与主动力与主动力之间的关系之间的关系之间的关系之间的关系。第18页,本讲稿共22页解:解:解:解:给虚位移给虚位移给虚位移给虚位移由图中关系有由图中关系有由图中关系有由图中关系有代入虚功方程得代入虚功方程得代入虚功方程得代入虚功方程得 第19页,本讲稿共22页用虚速度法:用虚速度法:用虚速度法:用虚速度法:代入到代入到代入到代入到 用建立坐标,取变分的方法,有用建立坐标,取变分的方法,有用建立坐标,取变分的方法,有用建立坐标,取变分的方法,有解得解得解得解得第20页,本讲稿共22页求:求:求:求:例例例例15-515-5求图所示无重组合梁支座求图所示无重组合梁支座求图所示无重组合梁支座求图所示无重组合梁支座的约束力。的约束力。的约束力。的约束力。第21页,本讲稿共22页解:解除解:解除解:解除解:解除AA处约束,代之处约束,代之处约束,代之处约束,代之 ,给虚位移,如图(,给虚位移,如图(,给虚位移,如图(,给虚位移,如图(bb)代入虚功方程,得代入虚功方程,得代入虚功方程,得代入虚功方程,得第22页,本讲稿共22页