欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    三角形内外角平分线性质定理精.ppt

    • 资源ID:72352963       资源大小:2.05MB        全文页数:22页
    • 资源格式: PPT        下载积分:18金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要18金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    三角形内外角平分线性质定理精.ppt

    三角形内外角平分线性质定理第1页,本讲稿共22页本本节节内内容容是是关关于于几几何何中中的的一一些些比比例例关关系系,这这几几节节内内容容现现在在在在初初中中课课本本中中已已“淡淡化化”,但但是是这这几几个个结结论论在在高高中中的的“立立体体几几何何”和和“平平面面解解析析几几何何”中中有有时时会会用用到到.因因此此,在在本本节节中中首首先先把把这这几几个个定定理理内内容容介介绍绍给给同同学学们们,然然后后利利用用这这三三个个定定理理来来解解决决一一些些题题目目.其其中中对对于于“平平行行线线分分线线段段成成比比例例”介介绍绍几几条条稍稍有有难难度度的的题题目目,而而“三三角角形形内内外外角角平平分分线线性性质质定定理理”的的题题目目直直接接围围绕绕定理展开,难度不大定理展开,难度不大.第2页,本讲稿共22页平行线分线段成比例定理平行线分线段成比例定理三条平行线截两条直线,截得的对应线段成比例三条平行线截两条直线,截得的对应线段成比例 定理的基本图形:定理的基本图形:如图,因为如图,因为ADBECF,所以所以AB:BC=DE:EF;AB:AC=DE:DF;BC:AC=EF:DF 也可以说也可以说AB:DE=BC:EF;AB:DE=AC:DF;BC:EF=AC:DF 第3页,本讲稿共22页推论的基本图形推论的基本图形:平行线分线段成比例定理推论平行线分线段成比例定理推论:平行于三角形一边的直线截其他两边平行于三角形一边的直线截其他两边 (或两边的延长线),所得的对应线段成比例或两边的延长线),所得的对应线段成比例 第4页,本讲稿共22页第5页,本讲稿共22页例例3:用平行于三角形一边且和其他两边相交的直线截三角:用平行于三角形一边且和其他两边相交的直线截三角形,所截得的三角形的三边与原三角形的三边对应成比例形,所截得的三角形的三边与原三角形的三边对应成比例.(文字语言文字语言)已知:如图,DE/BC分别交AB、AC于点D、E.求证:(符号语言)CBADEF(图形语言)分析分析:由平行线分线段:由平行线分线段成比例定理的推论可直成比例定理的推论可直接得到接得到AD:AB=AE:AC.为了证明为了证明AE:AC=DE:BC,需要构造一组平行线,使需要构造一组平行线,使AE、AC、DE、BC成为成为由这组平行线截得的线段由这组平行线截得的线段.故作故作EF/AB.证明:过点证明:过点E作作EF/AB,交交BC于点于点F,DE/BC,AD:AB=AE:AC.EF/AB,BF:BC=AE:AC.且四边形且四边形DEFB为平行四边形为平行四边形.DE=BF.DE:BC=AE:AC.第6页,本讲稿共22页CBADEG已知:如图,DE/BC分别交AB、AC于点D、E.求证:(图形语言)法2:为了证明 ,需用平行线分线段成比例定理.故作CG/AB,且与DE的延长线交于点G.证明:过点C作CG/AB,且与DE的延长线交于点G.DE/BC,AD:AB=AE:ACCG/AB,DE:DG=AE:AC四边形DEFB为平行四边形,DG=BC.第7页,本讲稿共22页例例1:证明:证明:(平行于三角形一边的直线截其他两边,平行于三角形一边的直线截其他两边,所得的对应线段成比例)所得的对应线段成比例)同理可得同理可得:第8页,本讲稿共22页例例2 2:证明:证明:(平行于三角形的一边,并且和其他两边(平行于三角形的一边,并且和其他两边相交的直线所截得的三角形的三边与原三相交的直线所截得的三角形的三边与原三角形三边对应成比例。)角形三边对应成比例。)第9页,本讲稿共22页例例3证明:证明:第10页,本讲稿共22页三角形内角平分线定理:三角形内角平分线定理:ABCD三角形外角平分线定理:三角形外角平分线定理:ABCDE第11页,本讲稿共22页第12页,本讲稿共22页三角形内角平分线定理:三角形任意两边之比等于它们夹角的平分线分对边之比。三角形内角平分线定理:三角形任意两边之比等于它们夹角的平分线分对边之比。已知:如图8-4甲所示,AD是ABC的内角BAC的平分线。求证:BA/AC=BD/DC;思路1:过C作角平分线AD的平行线,用平行线分线段成比例定理证明。证明1:过C作CEDA与BA的延长线交于E。则:BA/AE=BD/DC;BAD=AEC;(两线平行,同位角相等)CAD=ACE;(两线平行,内错角相等)BAD=CAD;(已知)AEC=ACE;(等量代换)AE=AC;BA/AC=BD/DC。结论1:该证法具有普遍的意义。第13页,本讲稿共22页思路2:利用面积法来证明。已知:如图8-4乙所示,AD是ABC的内角BAC的平分线。求证:BA/AC=BD/DC证明2:过D作DEAB于E,DFAC于F;BAD=CAD;(已知)DE=DF;BA/AC=SBAD/SDAC;(等高时,三角形面积之比等于底之比)BD/DC=SBAD/SABCDAC;(同高时,三角形面积之比等于底之比)BA/AC=BD/DC第14页,本讲稿共22页结论2:遇到角平分线,首先要想到往角的两边作平行线,构造等腰三角形或菱形,其次要想到往角的两边作垂线,构造翻转的直角三角形全等,第三,要想到长截短补法,第四,你能想到用该定理解决问题吗?第15页,本讲稿共22页三角形外角平分线定理:三角形三角形外角平分线定理:三角形两边之比等于其夹角的外角平分两边之比等于其夹角的外角平分线外分对边之比。线外分对边之比。三角形外角平分线定理:如果三角形的外角平分线外分对边成两条线段,那么这两条线段和相邻的两边应成比例.第16页,本讲稿共22页已知:如图8-5甲所示,AD是ABC中BAC的外角CAF的平分线。求证:BA/AC=BD/DC思路1:作角平分线AD的平行线,用平行线分线段成比例定理证明。证明1:过C作CEDA与BA交于E。则:BA/AE=BD/DCDAF=CEA;(两线平行,同位角相等)DAC=ECA;(两线平行,内错角相等)DAF=DAC;(已知)CEA=ECA;(等量代换)AE=AC;BA/AC=BD/DC。结论1:该证法具有普遍的意义。角度看问题的方法了吗?第17页,本讲稿共22页思路2:利用面积法来证明。已知:如图8-5乙所示,AD是ABC内角BAC的外角CAF的平分线。求证:BA/AC=BD/DC.证明2:过D作DEAC于E,DFBA的延长线于F;DAC=DAF;(已知)DE=DF;BA/AC=SBAD/DAC;(等高时,三角形面积之比等于底之比)BD/DC=SBAD/DAC;(同高时,三角形面积之比等于底之比)BA/AC=BD/DC结论:使用面积法时,要善于从不同的角度去看三角形的底和高。在该证法中,我们看BAD和DAC的面积时,先以BA和AC作底,而以DF、DE为等高。然后以BD和DC为底,而高是同高,图中并没有画出来。你学会这种变换第18页,本讲稿共22页内角平分线性质定理证明证明:证明:ABDC第19页,本讲稿共22页外角平分线性质定理证明证明:证明:过C作AD的平行线交AB于点E。BDCDABAE,1AECCADACE1CADAECACEAEACBDCDABAC第20页,本讲稿共22页第21页,本讲稿共22页END第22页,本讲稿共22页

    注意事项

    本文(三角形内外角平分线性质定理精.ppt)为本站会员(石***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开