2020年电大统计学原理简答重要知识点.doc
精选四、简答题1 怎样区分如下概念:统计标志和标志表现、品质标志与质量指标?品质标志可否汇总为质量指标?参考答案:标志是总体中各单位所共同具有的某特征或属性,即标志是说明总体单位属性和特征的名称。标志表现是标志特征在各单位的具体表现,是标志的实际体现者。 例如:学生的“成绩”是标志,而成绩为“90”分,则是标志表现。 品质标志表明总体单位属性方面的特征,其标志表现只能用文字来表现;质量指标是反映社会经济现象总体的相对水平或工作质量的统计指标,它反映的是统计总体的综合数量特征,可用数值表示,具体表现为相对数和平均数。品质标志本身不能直接汇总为统计指标,只有对其标志表现所对应的单位进行总计时才形成统计指标,但不是质量指标,而是数量指标。 2什么是普查?普查和全面统计报表都是全面调查,二者有何区别?说出你所知道的我国近十年来开展的普查的名称(不少于2种)。另外,某地区对占该地区工业增加值三分之二的10个企业进行调查,你认为这种调查方式是重点调查还是典型调查?为什么?参考答案:普查是专门组织的、一般用来调查属于一定时点上社会经济现象数量的全面调查。普查和全面统计报表虽然都是全面调查,但二者是有区别的。普查属于不连续调查,调查内容主要是反映国情国力方面的基本统计资料。而全面统计报表属于连续调查,调查内容主要是需要经常掌握的各种统计资料。全面统计报表需要经常填报,因此报表内容固定,调查项目较少,而普查是专门组织的一次性调查,在调查时可以包括更多的单位,分组更细、调查项目更多。因此,有些社会经济现象不可能也不需要进行经常调查,但又需要掌握比较全面、详细的资料,这就可以通过普查来解决。普查花费的人力、物力和时间较多,不宜经常组织,因此取得经常性的统计资料还需靠全面统计报表。我国近十年进行的普查有第五次人口普查、全国基本单位普查、全国经济普查、第二次农业普查等。3. 调查对象、调查单位和报告单位的关系如何? 参考答案:调查对象是应搜集其资料的许多单位的总体;调查单位是构成调查对象的每一个单位,它是进行登记的标志的承担者;报告单位也叫填报单位,它是提交调查资料的单位,一般是基层企事业组织。调查对象与调查单位的关系是总体与个体的关系。调查对象是由调查目的决定的,是应搜集其资料的许多单位的总体;调查单位也就是总体单位,是调查对象下所包含的具体单位。调查对象和调查单位的概念不是固定不变的,随着调查目的的不同二者可以互相变换。报告单位也称填报单位,也是调查对象的组成要素。它是提交调查资料的单位,一般是基层企事业组织。 调查单位是调查资料的直接承担者,报告单位是调查资料的提交者,二者有时一致,有时不一致。如工业企业生产经营情况调查,每一个工业企业既是调查单位,又是报告单位;工业企业职工收入状况调查,每一个职工是调查单位,每一个工业企业是报告单位。4. 变量分组为何分单项式分组和组距式分组?它们的应用条件有何不同? 参考答案:单项式分组就是以一个变量值为一组,组距式分组是以变量值变化的一个区间为一组。变量有离散变量和连续变量两种,离散变量可一一列举,而连续变量是连续不断,相邻两值之间可作无限分割。所以,离散型变量如果变动幅度小,采用单项式分组,如果变动幅度大,变量值个数多,则用组距式分组。而连续型变量由于无法逐一列举其数值,其分组只能是组距式分组。 答题分析:本题要根据变量值的特征来回答由于变量取值的连续性不同,分组时要区别对待,分别采用单项式或组距式分组形式,以免分组时出现总体单位在各组的重复或遗漏。5简单说明结构相对指标和比例相对指标、强度相对指标与平均指标的区别并举例说明。参考答案:结构相对指标是以总体总量为比较标准,计算各组总量占总体总量的比重,来反映总体内部组成情况的综合指标。如:各工种的工人占全部工人的比重 。比例相对指标是总体不同部分数量对比的相对数,用以分析总体范围内各个局部之间比例关系和协调平衡状况。如:轻重工业比例。强度相对指标与平均指标的区别主要表现在以下两点:指标的含义不同。强度相对指标说明的是某一现象在另一现象中发展的强度、密度或普遍程度;而平均指标说明的是现象发展的一般水平,计算方法不同。强度相对指标与平均指标,虽然都是两个有联系的总量指标之比,但是,强度相对指标分子与分母的联系,只表现为一种经济关系,而平均指标分子与分母的联系是一种内在的联系,即分子是分母(总体单位)所具有的标志,对比结果是对总体各单位某一标志值的平均。 6. 在什么情况下,应用简单算术平均数和加权算术平均数计算结果是一致的?参考答案:在分组数列的条件下,当各组标志值出现的次数或各组次数所占比重均相等时,权数就失去了权衡轻重的作用,这时用加权算术平均数计算的结果与用简单算术平均数计算的结果相同。 7简述抽样推断概念及特点参考答案:抽样推断是在抽样调查的基础上,利用样本的实际资料计算样本指标,并据以推算总体相应数量特征的统计分析方法。特点:(1)是由部分推算整体的一种认识方法论;(2)建立在随机取样的基础上;(3)运用概率估计的方法;(4)抽样推断的误差可以事先计算并加以控制。8回归直线方程中待定参数a、b的含义是什么? 参考答案:参数a代表直线的起点值,在数学上称为直线的纵轴截距, b代表自变量增加一个单位时因变量的平均增加值,数学上称为斜率,也称回归系数。 9简述统计指数的作用及分类 ,简述在综合指数计算中对同度量因素时期的要求。参考答案:作用:1综合反映复杂现象总体数量上的变动状态; 2分析现象总体变动中受各个因素变动的影响程度;3利用连续编制的指数数列,对复杂现象总体长时间发展变化趋势进行分析。 分类:1按所反映的对象范围不同,分为个体指数和总指数;2按所表明的指标性质的不同,分为数量指标指数和质量指标指数; 3按所采用基期的不同,分为定基指数和环比指数。 10. 什么是时期数列和时点数列?二者相比较有什么特点? 参考答案:在动态数列中,每一指标反映的是某现象在一段时间内发展过程的总量,则该动态数列称时期数列。 基本特点是:(1)数列具有连续统计的特点;(2)数列中各个指标的数值可以相加;(3)数列中各个指标数值大小与所包括时期长短有直接关系。 在动态数列中,每一指标值反映的是现象在某一时刻内发展状态的总量,则该动态数列称时点数列。 基本特点是:(1)数列不具有连续统计的特点;(2)数列中各个指标的数值不可以相加;(3)数列中各个指标数值大小与所包括时期长短没有直接关系。 五、计算题1某班40名学生某课程成绩分别为: 68 89 88 84 86 87 75 73 72 68 75 82 97 58 81 54 79 76 95 76 71 60 90 65 76 72 76 85 89 92 64 57 83 81 78 77 72 61 70 81按学校规定:60分以下为不及格,6070分为及格,7080分为中,8090分为良,90100分为优。要求:(1) 将学生的考核成绩分组并编制一张考核成绩次数分配表; (2)指出分组标志及类型及采用的分组方法;(3)计算本班学生的考核平均成绩并分析本班学生考核情况。 解(1)成 绩人数频率(%)60分以下60-7070-8080-9090-10036151247.51537.53010合 计40100(2)分组标志为"成绩",其类型为"数量标志";分组方法为:变量分组中的开放组距式分组,组限表示方法是重叠组限;(3)平均成绩:平均成绩=,即(分)答题分析:先计算出组距式分组数列的组中值。本题掌握各组平均成绩和对应的学生数资料(频数),掌握被平均标志值及频数、频率、用加权平均数计算。(4)本班学生的考核成绩的分布呈两头小, 中间大的" 正态分布"的形态,平均成绩为77分,说明大多数学生对本课程知识的掌握达到了课程学习的要求。 2某地区销售某种商品的价格和销售量资料如下:商品规格销售价格(元)各组商品销售量占总销售量的比重(%)甲乙丙20-3030-4040-50205030根据资料计算三种规格商品的平均销售价格。参考答案:商品规格销售价格(元)组中值(x)比重(%)x 甲乙丙20-3030-4040-502535452050305.017.513.5合计-10036.0 (元)答题分析: 第一,此题给出销售单价和销售量资料,即给出了计算平均指标的分母资料,所以需采用算术平均数计算平均价格。第二,所给资料是组距数列,因此需计算出组中值。采用加权算术平均数计算平均价格。第三,此题所给的是比重权数,因此需采用以比重形式表示的加权算术平均数公式计算。 3有两企业工人日产量资料如下:平均日产量(件)标准差(件)甲企业173乙企业26.13.3试比较哪个企业的工人平均日产量更具代表性?参考答案: 可见,乙企业的平均日产量更具有代表性。答题分析:这显然是两组水平不同的现象总体,不能直接用标准差的大小分析平均水平的代表性,必须计算标准差系数。4采用简单重复抽样的方法,抽取一批产品中的200件作为样本,其中合格品为195件。要求: 计算样本的抽样平均误差。 以95.45%的概率保证程度对该产品的合格率进行区间估计(z=2)。参考答案: n=200件p%=97.5%抽样成数平均误差: 抽样极限误差:p= =2×1.1%=2.2%,则合格率的范围:P=p±p =97.5%±2.2% 95.3%P99.7%样本的抽样平均误差为1.1%,在95.45%的概率保证程度下,该批产品合格率在95.3%至99.7%之间。 5在4000件成品中按不重复方法抽取200件进行检查,结果有废品8件,当概率为0.9545(z =2)时,试估计这批成品废品量的范围。参考答案:N=4000,n=200,z=2.样本成数P=0.04,则样本平均误差:允许误差p=2×0.0125=0.027废品率范围p=p±p=0.04±0.027 即1.3%-6.7%废品量=全部成品产量×废品率则全部成品废品量范围为:4000×1.3%-4000×6.7% 即52-268(件)6在某乡2万亩水稻中按重复抽样方法抽取400亩,得知平均亩产量为609斤,样本标准差为80斤.要求以95.45%(z=2)的概率保证程度估计该乡水稻的平均亩产量和总产量的区间范围。参考答案:本题是变量总体平均数抽样N=40000,n=400,=609斤,=80, z=2样本平均误差允许误差x=2×4=8平均亩产范围=±x 609-8609+8 即601617(斤)总产量范围:601×20000-617×20000 即12021234(万斤) 7某企业上半年产品产量与单位成本资料如下:月份产量(千件)单位成本(元)123456234345737271736968要求: 计算相关系数,说明两个变量相关的密切程度。 配合回归方程,指出产量每增加1000件时单位成本平均变动多少? 假定产量为6000件时,单位成本为多少元?参考答案:设产量为自变量(x),单位成本为因变量(y)列表计算如下:月份n产量(千件)x单位成本(元)yx2y2xy123456234345737271736968491691625532951845041532947614624146216284219276340合计2142679302681481 计算相关系数 配合加归方程 yc=a+bx 即产量每增加1000件时,单位成本平均下降1.82元。 当产量为6000件时,即x=6,代入回归方程: yc=77.37-1.82×6=66.45(元)即产量为6000件时,单位成本为66.45元。 8.某农贸市场三种农产品价格、销售量资料如下:农产品基期计算期零售价(元/公斤)销售量(公斤)零售价(元/公斤)销售量(公斤)青菜羊肉鲤鱼120181000605008182012008040试计算零售价格总指数和销售量总指数以及由于价格和销售量的变化对销售额带来的影响。解:由于价格变动对销售额的绝对影响:(元) 由于销售量变动对销售额的绝对影响:(元)9某工厂基期和报告期的单位成本和产量资料如下:单位基 期报告期单位成本产量单位成本产量甲产品(件)5052045600乙产品(公斤)120200110500试从相对数和绝对数两方面对总成本的变动进行因素分析。参考答案:总成本指数= 产量指数=由于产量增加而增加的总成本: 单位成本指数=由于单位成本降低而节约的总成本:164%=180%×91%32000=40000-8000答题分析:总成本之所以增长64%,是由于产量增加80%和单位成本降低9%两因素共同影响的结果;产量增加使总成本增加40000元,单位成本降低使总成本节约8000元,两因素共同作用的结果使总成本绝对额增加32000元。10某企业生产甲、乙、丙三种产品,1984年产品产量分别比1983年增长2%、5%、8%。1983年甲、乙、丙产品产值分别为5000元,1200元,24000元,问1984年三种产品产量比1983年增加多少?由于产量增加而增加的产值是多少?参考答案:11.某集团公司销售的三种商品的销售额及价格提高幅度资料如下:商品种类单位商品销售额(万元)价格提高%基期报告期甲乙丙条件块101520111322250试求价格总指数和销售额总指数。参考答案:价格总指数= =101.86% 销售额总指数= 121985年上半年某商店各月初商品库存资料如下:一月二月三月四月五月六月七月42343532363338试确定上半年商品平均库存额。(单位:千元)参考答案:这是间断登记资料且间隔相等的时点数列。登记资料的时点在各月初,将七月初的库存视为6月底库存。用首末折半法计算。= 30(千元) 注意:在既有期初又有期末登记资料的时点数列中,间隔的计算一定要仔细,以免发生错误。 13某百货公司月商品销售额及月初库存资料如下: 4月 5月 6月 7月销售额 150 200 240 276库存额 45 55 45 75计算第二季度平均每月商品流转次数和第二季度商品流转次数。参考答案:第二季度平均每月流转次数:第二季度商品周转次数: (或3.69×3=11.07) 答题分析:商品流转次数= 即 。这是对相对指标时间数列计算序时平均数。该相对指标的分子数列是时期数列,分母数列是时点数列,应“分子、分母分别求序时平均数,再将这两个序时平均数对比”。 14某工厂第一季度工人数和工业总产值资料如下表,试计算该厂第一季度的平均月劳动生产率。 一月 二月 三月 四月总产值(万元)月初工人数 (人) 250 272 271 323 1850 2050 1950 2150参考答案:劳动生产率= 即 这是对静态平均数时间数列计算序时平均数,其方法和相对数时间数列计算序时平均数相同。第一季度月平均劳动生产率 15某地区历年粮食产量如下:年份2002年2003年2004年2005年2006年粮食产量(万斤)434472516618618要求:(1)试计算各年的逐期增长量及年平均增长量。 (2)如果从2006年起该地区的粮食生产以10%的增长速度发展,预计到2010年该地区的粮食产量将达到什么水平? (1)计算结果如下表:年 份2002年2003年2004年2005年2006年粮食产量(万斤)434472516584618环比发展速度(%)-1087610932 1131810582平均增长量(万斤) (或平均增长量)(2)如果从2006年起该地区的粮食生产以10%的增长速度发展,预计到2010年该地区的粮食产量将达到: 资料可以编辑修改使用资料可以编辑修改使用资料可以编辑修改使用致力于数据挖掘,合同简历、论文写作、PPT设计、计划书、策划案、学习课件、各类模板等方方面面,打造全网一站式需求主要经营:网络软件设计、图文设计制作、发布广告等,公司秉着以优质的服务对待每一位客户,做到让客户满意THANKS !致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考-可编辑修改-