2021-2022学年安阳市重点中学中考数学模拟精编试卷含解析.doc
-
资源ID:72408192
资源大小:703.54KB
全文页数:20页
- 资源格式: DOC
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年安阳市重点中学中考数学模拟精编试卷含解析.doc
2021-2022中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1分别写有数字0,1,2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( )ABCD2商场将某种商品按原价的8折出售,仍可获利20元已知这种商品的进价为140元,那么这种商品的原价是()A160元 B180元 C200元 D220元3化简的结果是()A1BCD4如图,AB是的直径,点C,D在上,若,则的度数为ABCD5如图,若ABCD,则、之间的关系为()A+=360°B+=180°C+=180°D+=180°6如果y+3,那么yx的算术平方根是( )A2B3C9D±37一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离(千米)与快车行驶时间t(小时)之间的函数图象是ABCD8函数y=中,x的取值范围是()Ax0Bx2Cx2Dx29已知关于的方程,下列说法正确的是A当时,方程无解B当时,方程有一个实数解C当时,方程有两个相等的实数解D当时,方程总有两个不相等的实数解10将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()Ay=(x+2)25 By=(x+2)2+5 Cy=(x2)25 Dy=(x2)2+5二、填空题(共7小题,每小题3分,满分21分)11如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点若AC=,AEO=120°,则FC的长度为_12如图,ABC内接于O,CAB=30°,CBA=45°,CDAB于点D,若O的半径为2,则CD的长为_13若关于x的一元二次方程x2+2xm=0有两个相等的实数根,则m的值为_14已知线段AB10cm,C为线段AB的黄金分割点(ACBC),则BC_15不等式组的所有整数解的积为_16如图,圆锥底面圆心为O,半径OA1,顶点为P,将圆锥置于平面上,若保持顶点P位置不变,将圆锥顺时针滚动三周后点A恰好回到原处,则圆锥的高OP_17如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的负半轴上,函数y(x0)的图象经过菱形OABC中心E点,则k的值为_三、解答题(共7小题,满分69分)18(10分)如图,在平面直角坐标系中,O为坐标原点,ABO的边AB垂直于x轴,垂足为点B,反比例函数y(x0)的图象经过AO的中点C,交AB于点D,且AD1设点A的坐标为(4,4)则点C的坐标为 ;若点D的坐标为(4,n)求反比例函数y的表达式;求经过C,D两点的直线所对应的函数解析式;在(2)的条件下,设点E是线段CD上的动点(不与点C,D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求OEF面积的最大值19(5分)矩形ABCD中,DE平分ADC交BC边于点E,P为DE上的一点(PEPD),PMPD,PM交AD边于点M(1)若点F是边CD上一点,满足PFPN,且点N位于AD边上,如图1所示求证:PN=PF;DF+DN=DP;(2)如图2所示,当点F在CD边的延长线上时,仍然满足PFPN,此时点N位于DA边的延长线上,如图2所示;试问DF,DN,DP有怎样的数量关系,并加以证明20(8分)一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元甲,乙两公司单独完成此项工程,各需多少天?若让一个公司单独完成这项工程,哪个公司的施工费较少?21(10分)如图,在平行四边形ABCD中,过点A作AEDC,垂足为点E,连接BE,点F为BE上一点,连接AF,AFE=D(1)求证:BAF=CBE;(2)若AD=5,AB=8,sinD=求证:AF=BF22(10分)如图,直线l切O于点A,点P为直线l上一点,直线PO交O于点C、B,点D在线段AP上,连接DB,且ADDB(1)求证:DB为O的切线;(2)若AD1,PBBO,求弦AC的长23(12分)在平面直角坐标系xOy中,抛物线yax2+2ax+c(其中a、c为常数,且a0)与x轴交于点A(3,0),与y轴交于点B,此抛物线顶点C到x轴的距离为1(1)求抛物线的表达式;(2)求CAB的正切值;(3)如果点P是x轴上的一点,且ABPCAO,直接写出点P的坐标24(14分)阅读材料:对于线段的垂直平分线我们有如下结论:到线段两个端点距离相等的点在线段的垂直平分线上即如图,若PAPB,则点P在线段AB的垂直平分线上请根据阅读材料,解决下列问题:如图,直线CD是等边ABC的对称轴,点D在AB上,点E是线段CD上的一动点(点E不与点C、D重合),连结AE、BE,ABE经顺时针旋转后与BCF重合(I)旋转中心是点 ,旋转了 (度);(II)当点E从点D向点C移动时,连结AF,设AF与CD交于点P,在图中将图形补全,并探究APC的大小是否保持不变?若不变,请求出APC的度数;若改变,请说出变化情况参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】试题分析:根据概率的求法,找准两点:全部等可能情况的总数;符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,1,2,1,3中任抽一张,那么抽到负数的概率是.故选B.考点:概率.2、C【解析】利用打折是在标价的基础之上,利润是在进价的基础上,进而得出等式求出即可【详解】解:设原价为x元,根据题意可得:80%x=140+20,解得:x=1所以该商品的原价为1元;故选:C【点睛】此题主要考查了一元一次方程的应用,根据题意列出方程是解决问题的关键3、A【解析】原式=(x1)2+=+=1,故选A4、B【解析】试题解析:连接AC,如图,AB为直径,ACB=90°, 故选B点睛:在同圆或等圆中,同弧或等弧所对的圆周角相等.5、C【解析】过点E作EFAB,如图,易得CDEF,然后根据平行线的性质可得BAE+FEA=180°,C=FEC=,进一步即得结论【详解】解:过点E作EFAB,如图,ABCD,ABEF,CDEF,BAE+FEA=180°,C=FEC=,FEA=,+()=180°,即+=180°故选:C【点睛】本题考查了平行公理的推论和平行线的性质,属于常考题型,作EFAB、熟练掌握平行线的性质是解题的关键6、B【解析】解:由题意得:x20,2x0,解得:x=2,y=1,则yx=9,9的算术平方根是1故选B7、C【解析】分三段讨论:两车从开始到相遇,这段时间两车距迅速减小;相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意故选C8、D【解析】试题分析:由分式有意义的条件得出x+10,解得x1故选D点睛:本题考查了函数中自变量的取值范围、分式有意义的条件;由分式有意义得出不等式是解决问题的关键9、C【解析】当时,方程为一元一次方程有唯一解当时,方程为一元二次方程,的情况由根的判别式确定:,当时,方程有两个相等的实数解,当且时,方程有两个不相等的实数解综上所述,说法C正确故选C10、A【解析】直接根据“上加下减,左加右减”的原则进行解答即可【详解】抛物线y=x2的顶点坐标为(0,0),先向左平移2个单位再向下平移1个单位后的抛物线的顶点坐标为(2,1),所以,平移后的抛物线的解析式为y=(x+2)21故选:A【点睛】本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键二、填空题(共7小题,每小题3分,满分21分)11、1【解析】先根据矩形的性质,推理得到OF=CF,再根据RtBOF求得OF的长,即可得到CF的长【详解】解:EFBD,AEO=120°,EDO=30°,DEO=60°,四边形ABCD是矩形,OBF=OCF=30°,BFO=60°,FOC=60°-30°=30°,OF=CF,又RtBOF中,BO=BD=AC=,OF=tan30°×BO=1,CF=1,故答案为:1【点睛】本题考查矩形的性质以及解直角三角形的运用,解题关键是掌握:矩形的对角线相等且互相平分12、【解析】连接OA,OC,根据COA=2CBA=90°可求出AC=,然后在RtACD中利用三角函数即可求得CD的长.【详解】解:连接OA,OC,COA=2CBA=90°,在RtAOC中,AC=,CDAB,在RtACD中,CD=AC·sinCAD=,故答案为.【点睛】本题考查了圆周角定理以及锐角三角函数,根据题意作出常用辅助线是解题关键.13、-1【解析】根据关于x的一元二次方程x2+2xm=0有两个相等的实数根可知=0,求出m的取值即可【详解】解:由已知得=0,即4+4m=0,解得m=-1故答案为-1.【点睛】本题考查的是根的判别式,即一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:当0时,方程有两个不相等的两个实数根;当=0时,方程有两个相等的两个实数根;当0时,方程无实数根14、(15-5)【解析】试题解析:C为线段AB的黄金分割点(ACBC),AC=AB=AC=×10=5-5,BC=AB-AC=10-(5-5)=(15-5)cm考点:黄金分割15、1【解析】解:,解不等式得:,解不等式得:,不等式组的整数解为1,1,151,所以所有整数解的积为1,故答案为1【点睛】本题考查一元一次不等式组的整数解,准确计算是关键,难度不大16、【解析】先利用圆的周长公式计算出PA的长,然后利用勾股定理计算PO的长【详解】解:根据题意得2×PA3×2×1,所以PA3,所以圆锥的高OP故答案为【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长17、8【解析】根据反比例函数的性质结合点的坐标利用勾股定理解答.【详解】解:菱形OABC的顶点A的坐标为(-3,-4),OA=OC=则点B的横坐标为-5-3=-8,点B的坐标为(-8,-4),点C的坐标为(-5,0)则点E的坐标为(-4,-2),将点E的坐标带入y=(x0)中,得k=8.给答案为:8.【点睛】此题重点考察学生对反比例函数性质的理解,掌握坐标轴点的求法和菱形性质是解题的关键.三、解答题(共7小题,满分69分)18、 (1)C(2,2);(2)反比例函数解析式为y;直线CD的解析式为yx+1;(1)m1时,SOEF最大,最大值为.【解析】(1)利用中点坐标公式即可得出结论;(2)先确定出点A坐标,进而得出点C坐标,将点C,D坐标代入反比例函数中即可得出结论;由n=1,求出点C,D坐标,利用待定系数法即可得出结论;(1)设出点E坐标,进而表示出点F坐标,即可建立面积与m的函数关系式即可得出结论【详解】(1)点C是OA的中点,A(4,4),O(0,0),C,C(2,2);故答案为(2,2);(2)AD1,D(4,n),A(4,n+1),点C是OA的中点,C(2,),点C,D(4,n)在双曲线上,反比例函数解析式为;由知,n1,C(2,2),D(4,1),设直线CD的解析式为yax+b,直线CD的解析式为yx+1;(1)如图,由(2)知,直线CD的解析式为yx+1,设点E(m,m+1),由(2)知,C(2,2),D(4,1),2m4,EFy轴交双曲线于F,F(m,),EFm+1,SOEF(m+1)×m(m2+1m4)(m1)2+,2m4,m1时,SOEF最大,最大值为【点睛】此题是反比例函数综合题,主要考查了待定系数法,线段的中点坐标公式,解本题的关键是建立SOEF与m的函数关系式19、(1)证明见解析;证明见解析;(2),证明见解析【解析】(1)利用矩形的性质,结合已知条件可证PMNPDF,则可证得结论;由勾股定理可求得DM=DP,利用可求得MN=DF,则可证得结论;(2)过点P作PM1PD,PM1交AD边于点M1,则可证得PM1NPDF,则可证得M1N=DF,同(1)的方法可证得结论【详解】解:(1)四边形ABCD是矩形,ADC=90°又DE平分ADC,ADE=EDC=45°;PMPD,DMP=45°,DP=MPPMPD,PFPN,MPN+NPD=NPD+DPF=90°,MPN=DPF在PMN和PDF中, ,PMNPDF(ASA),PN=PF,MN=DF;PMPD,DP=MP,DM2=DP2+MP2=2DP2,DM=DP又DM=DN+MN,且由可得MN=DF,DM=DN+DF,DF+DN=DP;(2)理由如下: 过点P作PM1PD,PM1交AD边于点M1,如图,四边形ABCD是矩形,ADC=90°又DE平分ADC,ADE=EDC=45°;PM1PD,DM1P=45°,DP=M1P,PDF=PM1N=135°,同(1)可知M1PN=DPF在PM1N和PDF中,PM1NPDF(ASA),M1N=DF,由勾股定理可得:=DP2+M1P2=2DP2,DM1DPDM1=DNM1N,M1N=DF,DM1=DNDF,DNDF=DP【点睛】本题为四边形的综合应用,涉及矩形的性质、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识在每个问题中,构造全等三角形是解题的关键,注意勾股定理的应用本题考查了知识点较多,综合性较强,难度适中20、解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天根据题意,得,解得x=1经检验,x=1是方程的解且符合题意1.5 x=2甲,乙两公司单独完成此项工程,各需1天,2天(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y1500)元,根据题意得12(y+y1500)=10100解得y=5000,甲公司单独完成此项工程所需的施工费:1×5000=100000(元);乙公司单独完成此项工程所需的施工费:2×(50001500)=105000(元);让一个公司单独完成这项工程,甲公司的施工费较少【解析】(1)设甲公司单独完成此项工程需x天,则乙工程公司单独完成需1.5x天,根据合作12天完成列出方程求解即可(2)分别求得两个公司施工所需费用后比较即可得到结论21、(1)见解析;(2)2.【解析】(1)根据相似三角形的判定,易证ABFBEC,从而可以证明BAF=CBE成立;(2)根据锐角三角函数和三角形的相似可以求得AF的长【详解】(1)证明:四边形ABCD是平行四边形,ABCD,ADBC,AD=BC,D+C=180°,ABF=BEC,AFB+AFE=180°,AFE=D,C=AFB,ABFBEC,BAF=CBE;(2)AEDC,AD=5,AB=8,sinD=,AE=4,DE=3EC=5AEDC,ABDC,AED=BAE=90°,在RtABE中,根据勾股定理得:BE=BC=AD=5,由(1)得:ABFBEC, =即 =解得:AF=BF=2【点睛】本题考查相似三角形的判定与性质、平行四边形的性质、解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答22、(1)见解析;(2)AC1【解析】(1)要证明DB为O的切线,只要证明OBD90即可(2)根据已知及直角三角形的性质可以得到PD2BD2DA2,再利用等角对等边可以得到ACAP,这样求得AP的值就得出了AC的长【详解】(1)证明:连接OD;PA为O切线,OAD90°;在OAD和OBD中,OADOBD,OBDOAD90°,OBBDDB为O的切线(2)解:在RtOAP中;PBOBOA,OP2OA,OPA10°,POA60°2C,PD2BD2DA2,OPAC10°,ACAP1【点睛】本题考查了切线的判定及性质,全等三全角形的判定等知识点的掌握情况23、(4)yx44x+3;(4);(3)点P的坐标是(4,0)【解析】(4) 先求得抛物线的对称轴方程, 然后再求得点C的坐标,设抛物线的解析式为ya(x+4)4+4,将点 (-3, 0) 代入求得a的值即可;(4) 先求得A、 B、 C的坐标, 然后依据两点间的距离公式可得到BC、AB,AC的长,然后依据勾股定理的逆定理可证明ABC=90°,最后,依据锐角三角函数的定义求解即可;(3) 连接BC,可证得AOB是等腰直角三角形,ACBBPO,可得代入个数据可得OP的值,可得P点坐标.【详解】解:(4)由题意得,抛物线yax4+4ax+c的对称轴是直线,a0,抛物线开口向下,又与x轴有交点,抛物线的顶点C在x轴的上方,由于抛物线顶点C到x轴的距离为4,因此顶点C的坐标是(4,4)可设此抛物线的表达式是ya(x+4)4+4,由于此抛物线与x轴的交点A的坐标是(3,0),可得a4因此,抛物线的表达式是yx44x+3(4)如图4,点B的坐标是(0,3)连接BCAB434+3448,BC444+444,AC444+4440,得AB4+BC4AC4ABC为直角三角形,ABC90°,所以tanCAB=即CAB的正切值等于(3)如图4,连接BC,OAOB3,AOB90°,AOB是等腰直角三角形,BAPABO45°,CAOABP,CABOBP,ABCBOP90°,ACBBPO,OP4,点P的坐标是(4,0)【点睛】本题主要考查二次函数的图像与性质,综合性大.24、B 60 【解析】分析:(1)根据旋转的性质可得出结论;(2)根据旋转的性质可得BF=CF,则点F在线段BC的垂直平分线上,又由AC=AB,可得点A在线段BC的垂直平分线上,由AF垂直平分BC,即CQP=90,进而得出APC的度数.详解:(1)B,60;(2)补全图形如图所示; 的大小保持不变, 理由如下:设与交于点直线是等边的对称轴, 经顺时针旋转后与重合 , 点在线段的垂直平分线上点在线段的垂直平分线上垂直平分,即 点睛:本题考查了旋转的性质,解题的关键是熟记旋转的性质及垂直平分线的性质,注意只证明一点是不能说明这条直线是垂直平分线的.