比例尺及比例尺缩放【资料和题】.doc
比例尺及比例尺缩放【资料和题】比例尺及比例尺缩放【资料和题】比例尺=图上距离/实际距离。比例尺通常有三种表示方法。 (1)数字式,用数字的比例式或分数式表示比例尺的大小。例如地图上1厘米代表实地距离500千米,可写成:150 000 000或写成:五千万分之一。 (2)线段式,在地图上画一条线段,并注明地图上1厘米所代表的实际距离。 (3)文字式,在地图上用文字直接写出地图上1厘米代表实地距离多少千米,如图上1厘米相当于地面距离10千米. 三种表示方法可以互换。 根据地图上的比例尺,可以量算图上两地之间的实地距离;根据两地的实际距离和比例尺,可计算两地的图上距离;根据两地的图上距离和实际距离,可以计算比例尺。 根据地图的用途,所表示地区范围的大小、图幅的大小和表示内容的详略等不同情况,制图选用的比例尺有大有小。地图比例尺中的分子通常为1,分母越大,比例尺就越小.通常比例尺大于二十万分之一的地图称为大比例尺地图;比例尺介于二十万分之一至一百万分之一之间的地图,称为中比例尺地图;比例尺小于一百万分之一的地图,称为小比例尺地图。在同样图幅上,比例尺越大,地图所表示的范围越小,图内表示的内容越详细,精度越高;比例尺越小,地图上所表示的范围越大,反映的内容越简略,精确度越低。地理课本和中学生使用的地图册中的地图,多数属于小比例尺地图。比例尺缩放的计算 将原比例尺放大到n倍;原比例Xn。 将原比例尺放大n倍;原比例X(n+1)。 将原比例尺缩小到1/n;原比例X1/n。 将原比例尺缩小1/n;原比例X(1-1/n). 比例尺缩放后,原面积之比变为缩放倍数的平方。1一支特种兵小分队,在方圆25平方千米的范围内执行任务,小分队指挥员所使用的地图,比例尺应当为A11,000,000 B1500,000 C1500 D110,0002某地图上,甲乙两地相距11.1厘米,且都位于北半球的同一条经线上,当夏至日太阳位于上中天时,测得甲地太阳高度为60°,乙地为50°,那么该地图的比例尺是( )A。1:24000000 B。1:3000000 C.1:500000 D。1:100000003将1:10000的某幅地图,表达的范围不变,图幅放大为原图的四倍,则新图的比例尺是( )A比例尺不变 B.1:2000 C.1:5000 D。1:400004将1/50000的比例尺缩小1/4,则新比例尺变为( )A。1:50000 B。1:5000000 C。1:66500 D.1:20000005将1:10000000的地图比例尺放大到2倍后,则新比例尺是( )A.1:20000000 B.1:5000000 C。1:10000000 D。1:20000001【解题思路】从表面上看,题目中没有直接提供图上距离和实际距离,这就需要从题目中进行挖掘。首先将25平方千米的面积数,按照正方形或圆形,求出其边长为5千米或282千米,即为计算所需的实际距离。然后利用题目中四个选项的比例尺分别进行计算,求出四个图上距离,依次为05厘米、1厘米、1000厘米、50厘米.不难看出:前两个图上距离太小,第三个又太大,按这样的比例尺绘制的地图,都不能满足特种兵小分队活动的需要,只有第四个大小适中,既便于携带,又能满足使用的需要。2【解题思路】比例尺=图上距离/实际距离.题上的图上距离已经给出是11.1厘米,实际距离没有直接给出,而是给出了甲乙两地的正午太阳高度分别是600和500。因为两地的纬度差等于两地的正午太阳高度差,所以两地的纬度差等于100.又因为在同一条经线上10纬度地上距离为111千米,所以可以计算出甲乙两地的实际距离是111千米/10×100=1110千米=111000000厘米。最后根据公式:比例尺=图上距离/实际距离,可以求出该地图的比例尺是11.1厘米/111000000厘米=1/10000000。3【解题思路】如果比例尺扩大几倍,图幅将扩大比例尺倍数的平方.在本题中图幅放大为原图的四倍,那么比例尺将放大为原图的=2倍,即(1:10000)×2=1:5000。4【解题思路】将1/50000的比例尺缩小1/4,即比例尺缩小到3/4,缩小后的比例尺应为:3/4×1/50000=1/66500。5【解题思路】将1:10000000的比例尺放大到2倍,放大后的比例尺是1/10000000×2=1/5000000,比例尺变大.