金属学与热处理总结版.pdf
金属学与热处理总结金属学与热处理总结一、金属的晶体结构重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性;基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念;晶体的特征、晶体中的空间点阵;晶格类型体心立方面心立方密排六方晶格类型间隙类型间隙个数原子半径rA间隙半径rB正四面体正八面体四面体扁八面体四面体正八面体晶胞中的原子数246fccA1原子半径配位数81212致密度68%74%74%hcpA3bccA284126126晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞;金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键;位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态;位错的柏氏矢量具有的一些特性:用位错的柏氏矢量可以判断位错的类型;柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;位错的柏氏矢量个部分均相同;刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度;晶界具有的一些特性:晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;原子在晶界上的扩散速度高于晶内,熔点较低;相变时新相优先在晶界出形核;晶界处易于发生杂质或溶质原子的富集或偏聚;晶界易于腐蚀和氧化;常温下晶界可以阻止位错的运动,提高材料的强度;二、纯金属的结晶重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制;基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念;铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功;相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团;过冷度:理论结晶温度与实际结晶温度的差称为过冷度;变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法;过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程;从热力学的角度上看,没有过冷度结晶就没有趋动力;根据Rk1T可知当过冷度T为零时临界晶核半径Rk为无穷大,临界形核功G 1T2也为无穷大;临界晶核半径Rk与临界形核功为无穷大时,无法形核,所以液态金属不能结晶;晶体的长大也需要过冷度,所以液态金属结晶需要过冷度;细化晶粒的方法:增加过冷度、变质处理、振动与搅拌;铸锭三个晶区的形成机理:表面细晶区:当高温液体倒入铸模后,结晶先从模壁开始,靠近模壁一层的液体产生极大的过冷,加上模壁可以作为非均质形核的基底,因此在此薄层中立即形成大量的晶核,并同时向各个方向生长,形成表面细晶区;柱状晶区:在表面细晶区形成的同时,铸模温度迅速升高,液态金属冷却速度减慢,结晶前沿过冷都很小,不能生成新的晶核;垂直模壁方向散热最快,因而晶体沿相反方向生长成柱状晶;中心等轴晶区:随着柱状晶的生长,中心部位的液体实际温度分布区域平缓,由于溶质原子的重新分配,在固液界面前沿出现成分过冷,成分过冷区的扩大,促使新的晶核形成长大形成等轴晶;由于液体的流动使表面层细晶一部分卷入液体之中或柱状晶的枝晶被冲刷脱落而进入前沿的液体中作为非自发生核的籽晶;三、二元合金的相结构与结晶重点内容:杠杆定律、相律及应用;基本内容:相、匀晶、共晶、包晶相图的结晶过程及不同成分合金在室温下的显微组织;合金、成分过冷;非平衡结晶及枝晶偏析的基本概念;相律:f=c p+1 其中,f为 自由度数,c为 组元数,p为 相数;伪共晶:在不平衡结晶条件下,成分在共晶点附近的亚共晶或过共晶合金也可能得到全部共晶组织,这种共晶组织称为伪共晶;合金:两种或两种以上的金属,或金属与非金属,经熔炼或烧结、或用其它方法组合而成的具有金属特性的物质;合金相:在合金中,通过组成元素组元原子间的相互作用,形成具有相同晶体结构与性质,并以明确界面分开的成分均一组成部分称为合金相;四、铁碳合金重点内容:铁碳合金的结晶过程及室温下的平衡组织,组织组成物及相组成物的计算;基本内容:铁素体与奥氏体、二次渗碳体与共析渗碳体的异同点、三个恒温转变;钢的含碳量对平衡组织及性能的影响;二次渗碳体、三次渗碳体、共晶渗碳体相对量的计算;五种渗碳体的来源及形态;奥氏体与铁素体的异同点:相同点:都是铁与碳形成的间隙固溶体;强度硬度低,塑性韧性高;不同点:铁素体为体心结构,奥氏体面心结构;铁素体最高含碳量为%,奥氏体最高含碳量为%,铁素体是由奥氏体直接转变或由奥氏体发生共析转变得到,奥氏体是由包晶或由液相直接析出的;存在的温度区间不同;二次渗碳体与共析渗碳体的异同点;相同点:都是渗碳体,成份、结构、性能都相同;不同点:来源不同,二次渗碳体由奥氏体中析出,共析渗碳体是共析转变得到的;形态不同二次渗碳体成网状,共析渗碳体成片状;对性能的影响不同,片状的强化基体,提高强度,网状降低强度;成分、组织与机械性能之间的关系:如亚共析钢;亚共析钢室温下的平衡组织为 FP,F 的强度低,塑性、韧性好,与 F 相比 P 强度硬度高,而塑性、韧性差;随含碳量的增加,F 量减少,P 量增加组织组成物的相对量可用杠杆定律计算;所以对于亚共析钢,随含碳量的增加,强度硬度升高,而塑性、韧性下降五、三元合金相图重点内容:固态下无溶解度三元共晶相图投影图中不同区、线的结晶过程、室温组织;基本内容:固态下无溶解度三元共晶相图投影图中任意点的组织并计算其相对量;三元合金相图的成分表示法;直线法则、杠杆定律、重心法则;六、金属及合金的塑性变形与断裂重点内容:体心与面心结构的滑移系;金属塑性变形后的组织与性能;基本内容:固溶体强化机理与强化规律、第二相的强化机理;霍尔配奇关系式;单晶体塑性变形的方式、滑移的本质;塑性变形的方式:以滑移和孪晶为主;滑移:晶体的一部分沿着一定的晶面和晶向相对另一部分作相对的滑动;滑移的本质是位错的移动;体心结构的滑移系个数为 12,滑移面:110,方向;面心结构的滑移系个数为 12,滑移面:111,方向;金属塑性变形后的组织与性能:显微组织出现纤维组织,杂质沿变形方向拉长为细带状或粉碎成链状,光学显微镜分辨不清晶粒和杂质;亚结构细化,出现形变织构;性能:材料的强度、硬度升高,塑性、韧性下降;比电阻增加,导电系数和电阻温度系数下降,抗腐蚀能力降低等;七、金属及合金的回复与再结晶重点内容:金属的热加工的作用;变形金属加热时显微组织的变化、性能的变化,储存能的变化;基本内容:回复、再结的概念、变形金属加热时储存能的变化;再结晶后的晶粒尺寸;影响再结晶的主要因素性能的变化规律;变形金属加热时显微组织的变化、性能的变化:随温度的升高,金属的硬度和强度下降,塑性和韧性提高;电阻率不断下降,密度升高;金属的抗腐蚀能力提高,内应力下降;再结晶:冷变形后的金属加热到一定温度之后,在原来的变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化,并恢复到完全软化状态,这个过程称之为再结晶;热加工的主要作用或目的是:把钢材加工成所需要的各种形状,如棒材、板材、线材等;能明显的改善铸锭中的组织缺陷,如气泡焊合,缩松压实,使金属材料的致密度增加;使粗大的柱状晶变细,合金钢中大块状碳化物初晶打碎并使其均匀分布;减轻或消除成分偏析,均匀化学成分等;使材料的性能得到明显的改善;影响再结晶的主要因素:再结晶退火温度:退火温度越高保温时间一定时,再结晶后的晶粒越粗大;冷变形量:一般冷变形量越大,完成再结晶的温度越低,变形量达到一定程度后,完成再结晶的温度趋于恒定;原始晶粒尺寸:原始晶粒越细,再结晶晶粒也越细;微量溶质与杂质原子,一般均起细化晶粒的作用;第二相粒子,粗大的第二相粒子有利于再结晶,弥散分布的细小的第二相粒子不利于再结晶;形变温度,形变温度越高,再结晶温度越高,晶粒粗化;加热速度,加热速度过快或过慢,都可能使再结晶温度升高;塑性变形后的金属随加热温度的升高会发生的一些变化:显微组织经过回复、再结晶、晶粒长大三个阶段由破碎的或纤维组织转变成等轴晶粒,亚晶尺寸增大;储存能降低,内应力松弛或被消除;各种结构缺陷减少;强度、硬度降低,塑性、韧度提高;电阻下降,应力腐蚀倾向显着减小;八、扩散重点内容:影响扩散的因素;扩散第一定律表达式;基本内容:扩散激活能、扩散的驱动力;柯肯达尔效应,扩散第二定律表达式;柯肯达尔效应:由置换互溶原子因相对扩散速度不同而引起标记移动的不均衡扩散现象称为柯肯达尔效应;影响扩散的因素:温度:温度越高,扩散速度越大;晶体结构:体心结构的扩散系数大于面心结构的扩散系数;固溶体类型:间隙原子的扩散速度大于置换原子的扩散速度;晶体缺陷:晶体缺陷越多,原子的扩散速度越快;化学成分:有些元素可以加快原子的扩散速度,有些可以减慢扩散速度;扩散第一定律表达式:扩散第一定律表达式:J DdCdx其中,J 为扩散流量;D 为扩散系数;dC为浓度梯度;dx扩散的驱动力为化学位梯度,阻力为扩散激活能九、钢的热处理原理重点内容:冷却时转变产物 P、B、M 的特征、性能特点、热处理的概念;基本内容:等温、连续 C-曲线;奥氏体化的四个过程;碳钢回火转变产物的性能特点;热处理:将钢在固态下加热到预定的温度,并在该温度下保持一段时间,然后以一定的速度冷却下来,让其获得所需要的组织结构和性能的一种热加工工艺;转变产物 P、B、M 的特征、性能特点:片状 P 体,片层间距越小,强度越高,塑性、韧性也越好;粒状 P 体,Fe3C 颗粒越细小,分布越均匀,合金的强度越高;第二相的数量越多,对塑性的危害越大;片状与粒状相比,片状强度高,塑性、韧性差;上贝氏体为羽毛状,亚结构为位错,韧性差;下贝氏体为黑针状或竹叶状,亚结构为位错,位错密度高于上贝氏体,综合机械性能好;低碳马氏体为板条状,亚结构为位错,具有良好的综合机械性能;高碳马氏体为片状,亚结构为孪晶,强度硬度高,塑性和韧性差;等温、连续 C-曲线;十、钢的热处理工艺重点内容:退火、正火的目的和工艺方法;淬火和回火的目的和工艺方法;基本内容:淬透性、淬硬性、热应力、组织应力、回火脆性、回火稳定性、过冷奥氏体的概念;淬火加热缺陷及其防止措施;热应力:工件在加热或冷却时,由于不同部位的温度差异,导致热胀或冷缩的不一致所引起的应力称为热应力;组织应力:由于工件不同部位组织转变不同时性而引起的内应力;淬透性:是表征钢材淬火时获得马氏体的能力的特性;可硬性:指淬成马氏体可能得到的硬度;回火稳定性:淬火钢对回火时发生软化过程的抵抗能力;回火脆性:钢在一定的温度范围内回火时,其冲击韧性显着下降,这种脆化现象叫做钢的回火脆性;过冷奥氏体:在临界温度以下处于不稳定状态的奥氏体称为过冷奥氏体;退火的目的:均匀钢的化学成分及组织;细化晶粒;调整硬度,改善钢的成形及切削加工性能;消除内应力和加工硬化;为淬火做好组织准备;正火的目的:改善钢的切削加工性能;细化晶粒,消除热加工缺陷;消除过共析钢的网状碳化物,便于球化退火;提高普通结构零件的机械性能;十一、工业用钢重点内容:材料强化方法;钢的分类和编号;基本内容:常用合金元素在钢中的主要作用;材料韧化的方法、钢的化学成分、金相组织热处理工艺和机械性能之间的关系;合金钢:在碳钢的基础上有意地加入一种或几种合金元素,使其使用性能和工艺性能得以提高的以铁为基的合金即为合金钢;金属学与热处理习题及参考解金属学与热处理习题及参考解一、论述四种强化的强化机理、强化规律及强化方法;1、形变强化形变强化:随变形程度的增加,材料的强度、硬度升高,塑性、韧性下降的现象叫形变强化或加工硬化;机理:随塑性变形的进行,位错密度不断增加,因此位错在运动时的相互交割加剧,结果即产生固定的割阶、位错缠结等障碍,使位错运动的阻力增大,引起变形抗力增加,给继续塑性变形造成困难,从而提高金属的强度;规律:变形程度增加,材料的强度、硬度升高,塑性、韧性下降,位错密度不断增加,根据公式=bG1/2,可知强度与位错密度的二分之一次方成正比,位错的柏氏矢量 b 越大强化效果越显着;方法:冷变形挤压、滚压、喷丸等;形变强化的实际意义利与弊:形变强化是强化金属的有效方法,对一些不能用热处理强化的材料可以用形变强化的方法提高材料的强度,可使强度成倍的增加;是某些工件或半成品加工成形的重要因素,使金属均匀变形,使工件或半成品的成形成为可能,如冷拔钢丝、零件的冲压成形等;形变强化还可提高零件或构件在使用过程中的安全性,零件的某些部位出现应力集中或过载现象时,使该处产生塑性变形,因加工硬化使过载部位的变形停止从而提高了安全性;另一方面形变强化也给材料生产和使用带来麻烦,变形使强度升高、塑性降低,给继续变形带来困难,中间需要进行再结晶退火,增加生产成本;2、固溶强化随溶质原子含量的增加,固溶体的强度硬度升高,塑性韧性下降的现象称为固溶强化;强化机理:一是溶质原子的溶入,使固溶体的晶格发生畸变,对滑移面上运动的位错有阻碍作用;二是位错线上偏聚的溶质原子形成的柯氏气团对位错起钉扎作用,增加了位错运动的阻力;三是溶质原子在层错区的偏聚阻碍扩展位错的运动;所有阻止位错运动,增加位错移动阻力的因素都可使强度提高;固溶强化规律:在固溶体溶解度范围内,合金元素的质量分数越大,则强化作用越大;溶质原子与溶剂原子的尺寸差越大,强化效果越显着;形成间隙固溶体的溶质元素的强化作用大于形成置换固溶体的元素;溶质原子与溶剂原子的价电子数差越大,则强化作用越大;方法:合金化,即加入合金元素;3、第二相强化钢中第二相的形态主要有三种,即网状、片状和粒状;网状特别是沿晶界析出的连续网状 Fe3C,降低的钢机械性能,塑性、韧性急剧下降,强度也随之下降;第二相为片状分布时,片层间距越小,强度越高,塑性、韧性也越好;符合s=0KS0-1/2的规律,S0片层间距;第二相为粒状分布时,颗粒越细小,分布越均匀,合金的强度越高,符合Gb的规律,粒子之间的平均距离;第二相的数量越多,对塑性的危害越大;片状与粒状相比,片状强度高,塑性、韧性差;沿晶界析出时,不论什么形态都降低晶界强度,使钢的机械性能下降;第二相无论是片状还是粒状都阻止位错的移动;方法:合金化,即加入合金元素,通过热处理或变形改变第二相的形态及分布;4、细晶强化细晶强化:随晶粒尺寸的减小,材料的强度硬度升高,塑性、韧性也得到改善的现象称为细晶强化;细化晶粒不但可以提高强度又可改善钢的塑性和韧性,是一种较好的强化材料的方法;机理:晶粒越细小,位错塞集群中位错个数n越小,根据 n0,应力集中越小,所以材料的强度越高;细晶强化的强化规律:晶界越多,晶粒越细,根据霍尔-配奇关系式s=0Kd-1/2晶粒的平均直 d 越小,材料的屈服强度s越高;细化晶粒的方法:结晶过程中可以通过增加过冷度,变质处理,振动及搅拌的方法增加形核率细化晶粒;对于冷变形的金属可以通过控制变形度、退火温度来细化晶粒;可以通过正火、退火的热处理方法细化晶粒;在钢中加入强碳化物物形成元素;二、改善塑性和韧性的机理晶粒越细小,晶粒内部和晶界附近的应变度差越小,变形越均匀,因应力集中引起的开裂的机会也越小;晶粒越细小,应力集中越小,不易产生裂纹;晶界越多,易使裂纹扩展方向发生变化,裂纹不易传播,所以韧性就好;提高或改善金属材料韧性的途径:尽量减少钢中第二相的数量;提高基体组织的塑性;提高组织的均匀性;加入 Ni 及细化晶粒的元素;防止杂质在晶界偏聚及第二相沿晶界析出;三、FeFe3C 相图,结晶过程分析及计算1.分析含碳的铁碳合金的结晶过程,并画出结晶示意图;点之上为液相 L L;点开始 L L;点结晶完毕;点之间为单相;点开始 转变;点开始 P P 共析转变;室温下显微组织为+P P;结晶示意图:2.计算 室温 下亚共析钢含碳量为x的组织组成物的相对量;组织组成物为 、P,相对量为:WPx 0.02180.77 x或100%,W 1WW 100%P0.77 0.02180.77 0.02183.分析含碳的铁碳合金的结晶过程;点之上为液相 L L;点开始 L L;之间为 L+L+;点结晶完毕;点之间为单相;点开始FeFe3 3C C 转变;点开始 P P 共析转变;室温下显微组织为 P P+Fe Fe3 3C C;结晶过程示意图;4.计算室温下过共析钢含碳量为x的组织组成物的相对量;组织组成物为 P、Fe3C,相对量为:WP6.69 xx 0.77或100%,W1WW100%Fe3C PFe3C6.690.776.690.775.分析共析钢的结晶过程,并画出结晶示意图;点之上为液相 L;点开始L;点结晶完毕;点之间为单相;点 P 共析转变;室温下显微组织为 P;结晶示意图:6.计算含碳%铁碳合金室温下组织组成物及相组成物的相对量;含 碳%的 亚 共 晶 白 口 铁 室 温 下 组 织 组 成 物 为 P、Fe3C,相 对 量 为:3.02.11100%40.6%,W1WLd 59.4%4.32.116.692.11WPW100%46.0%,WFe3CWWP13.4%6.690.77WLd相组成物为 F、Fe3C,相对量为:7.相图中共有几种渗碳体说出各自的来源及形态;相图中共有五种渗碳体:Fe3C、Fe3C、Fe3C、Fe3C共析、Fe3C共晶;Fe3C:由液相析出,形态连续分布基体;Fe3C:由奥氏体中析出,形态网状分布;Fe3C:由铁素体中析出,形态网状、短棒状、粒状分布在铁素体的晶界上;Fe3C共析:奥氏体共析转变得到,片状;Fe3C共晶:液相共晶转变得到,粗大的条状;8.计算室温下含碳量为x合金相组成物的相对量;相组成物为 、Fe3C,相对量为:9.Fe3C 的相对量:WFe3Cx 4.3100%6.69 4.36.69100%100%6.69x 0.7710.10.过共析钢中 Fe3C的相对量:WFe3C 22.6%6.690.772.110.77当 x=时 Fe3C含量最高,最高百分量为:WFe3C 22.6%6.690.77x11.Fe3C的相对量计算:WFe3C 100%6.690.0218当 x=时 Fe3C含量最高,最高百分量为:WFe3C 100%0.33%6.690.770.021812.共析渗碳体的相对百分量为:WFe3C100%11.2%6.690.02184.30 2.1113.共晶渗碳体的相对百分量为:WFe3C%47.8%6.69 2.11当 x=时 Fe3C 含量最高,最高百分量为:WFe3C14.说出奥氏体与铁素体的异同点;相同点:都是铁与碳形成的间隙固溶体;强度硬度低,塑性韧性高;不同点:铁素体为体心结构,奥氏体面心结构;铁素体最高含碳量为%,奥氏体最高含碳量为%,铁素体是由奥氏体直接转变或由奥氏体发生共析转变得到,奥氏体是由包晶或由液相直接析出的;存在的温度区间不同;15.说出二次渗碳体与共析渗碳体的异同点;相同点:都是渗碳体,成份、结构、性能都相同;不同点:来源不同,二次渗碳体由奥氏体中析出,共析渗碳体是共析转变得到的;形态不同二次渗碳体成网状,共析渗碳体成片状;对性能的影响不同,片状的强化基体,提高强度,网状降低强度;16.举例说明成分、组织与机械性能之间的关系如亚共析钢;亚共析钢室温下的平衡组织为 FP,F 的强度低,塑性、韧性好,与F 相比 P 强度硬度高,而塑性、韧性差;随含碳量的增加,F 量减少,P 量增加组织组成物的相对量可用杠杆定律计算;所以对于亚共析钢,随含碳量的增加,强度硬度升高,而塑性、韧性下降;17.说明三个恒温转变,画出转变特征图包晶转变 LBHJ含碳量范围的铁碳合金,于 HJB 水平线1495均将通过包晶转变,形成单相奥氏体;共晶转变LCEFe3C含碳放一范围的铁碳合金,于ECF平线上1148均将通过共晶转变,形成奥氏体和渗碳体两相混合的共晶体,称为菜氏体Ld;共析转变SPFe3C;含碳虽超过 002的铁碳合金,于 PSK水平线上 727均将通过共析转变,形成铁素体和渗碳体两相混合的共析体,称为珠光体 P;转变特征图LB包晶转变:共晶转变:共析转变:E EJ JHLCS SFe3CFe3CP各点成分为 C%:B:;H:;J:;C:;E:S:;P:;18.说出 Fe-Fe3C 相图中室温下的显微组织工业纯铁95转变量的温度;再结晶温度并不是一个物理常数,这是因为再结晶前后的晶格类型不变,化学成分不变,所以再结晶不是相变;影响再结晶温度的因素:纯度越高 T再越低;变形度越大 T再越低;加热速度越小 T再越高;二十一、塑性变形后的金属随加热温度的升高会发生的一些变化:显微组织经过回复、再结晶、晶粒长大三个阶段由破碎的或纤维组织转变成等轴晶粒,亚晶尺寸增大;储存能降低,内应力松弛或被消除;各种结构缺陷减少;强度、硬度降低,塑性、韧度提高;电阻下降,应力腐蚀倾向显着减小;二十二、什么是晶面间距计算低指数晶面的晶面间距;晶面间距 d:两个平行晶面之间的垂直距离;通常,低指数的晶面间距较大,而高指数晶面间距较小;晶面间距越大,则该晶面上原子排列越密集;对于简单立方点阵 dhkl=ah2k2l21/2fcc:d100,d110bcc:d100,d110a2a223a,d111a432a2二十三、什么是过冷度为什么金属结晶一定要有过冷度过冷度:理论结晶温度与实际结晶温度的差称为过冷度;液态金属结晶的过程是形核与晶核的长大过程;从热力学的角度上看,没有过冷度结晶就没有趋动力;根据Rk1T可知当过冷度T为零时临界晶核半径Rk为无穷大,临界形核功G 1T2也为无穷大;临界晶核半径Rk与临界形核功为无穷大时,无法形核,所以液态金属不能结晶;晶体的长大也需要过冷度,所以液态金属结晶需要过冷度;二十四、简述铸锭三个晶区的形成机理;表面细晶区:当高温液体倒入铸模后,结晶先从模壁开始,靠近模壁一层的液体产生极大的过冷,加上模壁可以作为非均质形核的基底,因此在此薄层中立即形成大量的晶核,并同时向各个方向生长,形成表面细晶区;柱状晶区:在表面细晶区形成的同时,铸模温度迅速升高,液态金属冷却速度减慢,结晶前沿过冷都很小,不能生成新的晶核;垂直模壁方向散热最快,因而晶体沿相反方向生长成柱状晶;中心等轴晶区:随着柱状晶的生长,中心部位的液体实际温度分布区域平缓,由于溶质原子的重新分配,在固液界面前沿出现成分过冷,成分过冷区的扩大,促使新的晶核形成长大形成等轴晶;由于液体的流动使表面层细晶一部分卷入液体之中或柱状晶的枝晶被冲刷脱落而进入前沿的液体中作为非自发生核的籽晶;二十五、影响置换固溶体溶解度的因素有哪些1、原子尺寸因素:尺寸差越小溶解度越大;2、负电性因素:在形成固溶体的情况下,溶解度随负电性差的减小而增大;3、电子浓度因素:电子浓度越小,越易形成无限固溶体;4、晶体结构因素:晶格类型相同溶解度较大;二十六、退火与正火的目的是什么退火的目的:均匀钢的化学成分及组织;细化晶粒;调整硬度,改善钢的成形及切削加工性能;消除内应力和加工硬化;为淬火做好组织准备;正火的目的:改善钢的切削加工性能;细化晶粒,消除热加工缺陷;消除过共析钢的网状碳化物,便于球化退火;提高普通结构零件的机械性能;二十七、固溶体与金属化合物有何异同点相同点:都具有金属的特性;不同点:结构不同,固溶体的结构与溶剂的相同,金属化合物的结构不同于任一组元;键合方式不同,固溶体为金属键,金属化合物为金属键、共价键、离子键混合键;性能不同,固溶体的塑性好、强度、硬度低,金属化合物,硬度高、熔点高、脆性大;在材料中的作用不同固溶体多为材料的基体,金属化合物为强化相;二十八、合金元素 Cr、Mn、Ni、强碳化物形成元素在钢中的主要作用是什么Cr 在钢中的主要作用有:溶入基体,提高淬透性,固溶强化;形成第二相提高强度、硬度;含量超过 13%时提高耐腐蚀性;在表面形成致密的氧化膜,提高抗氧化能力;Cr 促进第二类回火脆性的发生;Mn 在钢中的主要作用有:溶入基体,提高淬透性,固溶强化;形成第二相提高强度、硬度;含量超过 13%时形成奥氏体钢,提高耐磨性;消除硫的有害作用;Mn促进第二类回火脆性的发生,促进奥氏体晶粒的长大;Ni 在钢中的主要作用有:溶入基体,提高淬透性,固溶强化;扩大奥氏体区,提高钢的韧性,降低冷脆转变温度;强碳化物形成元素 Ti、Nb、Zr,V 的主要作用有:形成碳化物提高硬度、强度、耐磨性,提高回火稳定性,细化晶粒,防止晶间腐蚀;二十九、论述钢材在热处理过程中出现脆化现象的主要原因及解决方法;答:过共析钢奥氏体化后冷却速度较慢出现网状二次渗碳体时,使钢的脆性增加,脆性的网状二次渗碳体在空间上把塑性相分割开,使其变形能力无从发挥;解决方法,重新加热正火,增加冷却速度,抑制脆性相的析出;淬火马氏体在低温回火时会出现第一类回火脆性,高温回火时有第二类回火脆性,第一类回火脆性不可避免,第二类回火脆性,可重新加热到原来的回火温度,然后快冷恢复韧性;工件等温淬火时出现上贝氏体时韧性降低,重新奥氏体化后降低等温温度得到下贝氏体可以解解;奥氏体化温度过高,晶粒粗大韧性降低;如:过共析钢淬火温度偏高,晶粒粗大,获得粗大的片状马氏体时,韧性降低;奥氏体晶粒粗大,出现魏氏组织时脆性增加;通过细化晶粒可以解决;三十、20CrMnTi、40CrNiMo、60Si2Mn、T12 属于哪类钢含碳量为多少钢中合金元素的主要作用是什么淬火加热温度范围是多少常采用的热处理工艺是什么最终的组织是什么性能如何20CrMnTi 为渗碳钢,含碳量为%,最终热处理工艺是淬火加低温回火,得到回火马氏体,表面为高碳马氏体渗碳后,强度、硬度高,耐磨性好;心部低碳马氏体淬透强韧性好;Mn 与 Cr 提高淬透性,强化基体,Ti 阻止奥氏体晶粒长大,细化晶粒;40CrNiMo 为调质钢,含碳量为%,最终热处理工艺是淬火加高温回火,得到回火索氏体,具有良好的综合机械性能,Cr、Ni 提高淬透性,强化基体,Ni 提高钢的韧性,Mo 细化晶粒,抑制第二类回火脆性;60Si2Mn 为弹簧钢,含碳量为%,最终热处理工艺是淬火加中温回火,得到回火托氏体或回火屈氏体,具有很高的弹性极限,Si、Mn 提高淬透性,强化基体,Si 提高回火稳定性;T12 钢为碳素工具钢钢,含碳量为%,最终热处理工艺是淬火加低温回火,得到回火马氏体粒状 Fe3C残余奥氏体,强度硬度高、耐磨性高,塑性、韧性差;三十一、计算体心立与面心立方方结构滑移面的原子密度及滑移方向上的线密度;141221.44体心立方结构的滑移面为110,面密度222aaa2a2a2111.162a3a滑移方向为111,线密度113342.32面心立方结构的滑移面为111,面密度622a323aa22滑移方向为110,线密度111.4142a2a三十二、比较下贝氏体与高碳马氏体的主要不同点显微组织特征不同,下贝氏体为黑针状或竹叶状,高碳马氏体为片状;亚结构不同,下贝氏体亚结构为位错,高碳马氏体的亚结构为孪晶;性能特点不同,下贝氏体具有良好的综合机械性能,高碳马氏体强度硬度高,塑性和韧性差;相变特点不同,下贝氏体为半扩散型相变,高碳马氏体非扩散型相变;下贝氏体为复相组织,高碳马氏体为单相组织;三十三、过共析钢淬火加热温度为什么不超过 Accm过共析钢淬火加热温度为 AC13050;加热温度超过 Accm时,温度高,容易发生氧化、脱碳;奥氏体晶粒容易粗大,淬火后马氏体粗大,产生显微裂纹,强度下降;渗碳体全部溶解,失去耐磨相,奥氏体中的含碳量高,淬火后残余奥氏体量多,硬度降低、强度降低;三十四、亚共析钢正火与退火相比哪个硬度高为什么正火后硬度高;正火与退火相比,正火的珠光体是在较大的过冷度下得到的,因而对亚共析钢来说,析出的先共析铁素体较少,珠光体数量较多伪共析,珠光体片间距较小;此外由于转变温度较低,珠光体成核率较大,因而珠光体团的尺寸较小;三十五、用T12 钢锻后缓冷做一切削工具,工艺过程为:正火球化退火机加工成形淬火低温回火;各热处理工艺的目的是什么得到什么组织各种组织具有什么性能;正火:消除网状的二次渗碳体,同时改善锻造组织、消除锻造应力,得到片状的珠光体,片状的珠光体硬度较高,塑性韧性较差;球化退火:将片状的珠光体变成粒状珠光体,降低硬度,便于机械加工;组织为粒状珠光体,这种组织塑性韧性较好,强度硬度较低;淬火:提高硬度、强度和耐磨性;组织为马氏体粒状碳化物残余奥氏体;这种组织具有高强度高硬度,塑性韧性差;低温回火:减少或消除淬火应力,提高塑形和韧性;组织为回火马氏体粒状碳化物残余奥氏体;回火组织有一定的塑性韧性,强度、硬度高,耐磨性高;三十六、什么是淬火目的是什么具体工艺有哪些简述淬火加热温度的确定原则;把钢加热到临界点 Ac1或 Ac3以上保温并随之以大于临界冷却速度 Vc冷却,以得到介稳状态的马氏体或下贝氏体组织的热处理工艺方法称为淬火;淬火目的:提高工具、渗碳零件和其它高强度耐磨机器零件等的硬度、强度和耐磨性;结构钢通过淬火和回火之后获得良好的综合机械性能;此外,还有很少数的一部分工件是为了改善钢的物理和化学性能;如提高磁钢的磁性,不锈钢淬火以消除第二相,从而改善其耐蚀性等;具体工艺有:单液淬火法;中断淬火法双淬火介质淬火法;喷射淬火法;分级淬火法;等温淬火法;淬火加热温度,主要根据钢的相变点来确定;对亚共析钢,一般选用淬火加热温度为 Ac33050,过共析钢则为 Ac13050,合金钢一般比碳钢加热温度高;确定淬火加热温度时,尚应考虑工件的形状、尺寸、原始组织、加热速度、冷却介质和冷却方式等因素;在工件尺寸大、加热速度快的情况下,淬火温度可选得高一些;另外,加热速度快,起始晶粒细,也允许采用较高加热温度;三十七、某车床主轴 45 钢加工路线为:下料锻造正火机械加工淬火淬透高温回火花键高频表面淬火低温回火半精磨人工时效精磨;正火、淬火、高温回火、人工时效的目的是什么花键高频表面淬火、低温回火的目的是什么表面和心部的组织是什么正火处理是为了得到合适的硬度,以便切削加工,同时改善锻造组织,消除锻造应力;淬火是为了得到高强度的马氏体组织,高温回火是为了得到回火索氏体,淬火高温回火称为调质,目的是为使主轴得到良好的综合力学性能;人工时效主要是为了消除粗磨削加工时产生的残余应力;花键部分用高频淬火后低温回火是为了得到回火马氏体,增加耐磨性;表面为回火马氏体,心部为回火索氏体组织;三十八、什么是退火目的是什么具体工艺有哪些正火、退火工艺 选用的原则是什么将组织偏离平衡状态的金属或合金加热到适当的温度,保持一定时间,然后缓慢冷却以达到接近平衡状态组织的热处理工艺称为退火;退火的目的在于均匀化学成分、改善机械性能及工艺性能、消除或减少内应力,并为零件最终热处理准备合适的内部组织;具体工艺有:扩散退火、完全退火、不完全退火、球化退火、再结晶退火和消除应力退火;三十九、正火、退火工艺选用的原则是什么含 025C 以下的钢,在没有其它热处理工序时,可用正火来提高强度;对渗碳钢,用正火消除锻造缺陷及提高切削加工性能;对含碳 025050的钢,一般采用正火;对含碳 050075的钢,一般采用完全退火;含碳 07510的钢,用来制造弹簧时采用完全退火作预备热处理,用来制造刀具时则采用球化退火;含碳大于 10的钢用于制造工具,均采用球化退火作预备热处理;四十、说出低碳钢 15、20、中碳钢 40、45、共析钢 T8 获得良好综合力学性能的最终热处理工艺及组织;低碳钢:淬火加低温回火,组织为回火马氏体;中碳钢:淬火加高温回火,组织为回火索氏体;共析钢:等温淬火,组织为下贝氏体;四十一、比较回火索氏体与索氏体的主要异同点;相同点:都是铁素体与渗碳体的机械的机械混合物;不同点:渗碳体的形态不同,回火索氏体的渗碳体的形态为颗粒状,索氏体的渗碳体的形态为片状;来源不同,回火索氏体是淬火马氏体分解的到的,索氏体是奥氏体直接分解得到的;性能特点不同,回火索氏体具有良好的综合机械性能,索氏体的抗拉强度高;韧性比回火索氏体低;四十二、珠光体、贝氏体、马氏体的特征、性能特点是什么片状 P 体,片层间距越小,强度越高,塑性、韧性也越好;粒状 P 体,Fe3C 颗粒越细小,分布越均匀,合金的强度越高;第二相的数量越多,对塑性的危害越大;片状与粒状相比,片状强度高,塑性、韧性差;上贝氏体为羽毛状,亚结构为位错,韧性差;下贝氏体为黑针状或竹叶状,亚结构为位错,位错密度高于上贝氏体,综合机械性能好;低碳马氏体为板条状,亚结构为位错,具有良好的综合机械性能;高碳马氏体为片状,亚结构为孪晶,强度硬度高,塑性和韧性差;四十三、W18Cr4V 是什么钢主要性能特点是什么合金元素在钢中的主要作用是什么为什么此钢淬火加热的奥氏体化温度 12805非常高回火工艺是什么最终组织是什么W18Cr4V 是高速钢,主要性能特点是具有很高的红硬性,高硬度、高耐磨性和高的淬透性;合金元素在钢中的主要作用是:提高淬透性;形成高硬度碳化物,在回火时弥散析出,产生二次硬化效应,显着提高钢的红硬性、硬度和耐磨性;Cr 能提高钢的抗氧化、脱碳和抗腐蚀能力;目的是让钢中的碳化物形成元素 W、Cr、V 更多地溶解到奥氏体中,充分发挥碳和合金元素的作用,淬火后获得高碳、高合金的马氏体,回火时以合金碳化物形式析出,从而保证高速钢获得高的淬透性、淬硬性和红硬性;退火状态下这些合金元素大部分存在于合金碳化物中,而这些合金碳化物的稳定性很高,需要加热到很高的温度,才能使其向奥氏体中大量溶解;回火工艺是:560三次回火,每次 1 小时;