欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    沪科版八年级数学下知识点总结.pdf

    • 资源ID:72503170       资源大小:779.08KB        全文页数:15页
    • 资源格式: PDF        下载积分:11.9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要11.9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    沪科版八年级数学下知识点总结.pdf

    沪沪科科版版八八年年级级数数学学下下册册知知识识总总结结一元二次方程知识点:一元二次方程知识点:1.1.一元二次方程的一般形式:a0 时,ax+bx+c=0 叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的 a、b、c;其中 a、b,、c 可能是具体数,也可能是含待定字母或特定式子的代数式.2.一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少.3.一元二次方程根的判别式:当ax2+bx+c=0(a0)时,=b2-4ac 叫一元二次方程根的判别式.请注意以下等价命题:0 有两个不等的实根;=0 有两个相等的实根;0 无实根;0 有两个实根(等或不等).4.一元二次方程的根系关系:当 ax2+bx+c=0 (a0)时,如0,有下列公式:(1)x1,2bb24acb;(2)x1 x2,2aax1x2c.a25.5.一元二次方程的解法一元二次方程的解法(1)直直接开平方法接开平方法(也可以使用因式分解法)x2 a(a 0)解为:x a(xa)2 b(b 0)解为:xa b(axb)2 c(c 0)解为:axb c(axb)2(cxd)2(a c)解为:axb (cxd)(2)因因式分解法式分解法:提公因式分,平方公式,平方差,十字相乘法如:ax2bx 0(a,b 0)x(ax b)0此类方程适合用提供因此,而且其中一个根为 0 x29 0 (x3)(x3)0 x23x 0 x(x3)03x(2x1)5(2x1)0 (3x5)(2x1)0 x26x9 4 (x3)2 44x212x9 0 (2x3)2 0 x24x12 0 (x6)(x2)02x25x12 0 (2x3)(x 4)0(3 3)配配方法方法二次项的系数为“1”的时候:直接将一次项的系数除于2 进行配方,如下所示:P2P2)()q 02233示例:x23x1 0 (x)2()21 022x2 Pxq 0 (x二次项的系数不为“1”的时候:先提取二次项的系数,之后的方法同上:ax2bxc 0(a 0)a(x2bbbx)c 0 a(x)2a()2c 0a2a2ab2b2b2b24ac a(x)c (x)22a4a2a4a示例:x22x1 0(x24x)1 0(x2)2221 0(4)公式法:公式法:一元二次方程ax2bx c 0(a 0),用配方法将其变形为:b2b24ac(x)22a4a12121212 当 b24ac 0时,右 端 是 正 数 因 此,方 程 有 两 个 不 相 等 的 实 根:bb24acx1,22a 当 b24ac 0时,右端是零因此,方程有两个相等的实根:x1,2 当 b24ac 0时,右端是负数因此,方程没有实根。备注:公式法解方程的步骤:备注:公式法解方程的步骤:b2a把方程化成一般形式:一元二次方程的一般式:ax2bx c 0(a 0),并确定出a、b、c求出 b24ac,并判断方程解的情况。bb24ac代公式:x1,2(要注意符号)2a 5 5当当 axax2 2+bx+c=0 (a+bx+c=0 (a0)0)时,有以下等价命题:时,有以下等价命题:(以下等价关系要求会用公式以下等价关系要求会用公式x1x2,x1x2baca;=b=b2 2-4ac-4ac 分析,不要求背记分析,不要求背记)(1 1)两根互为相反数)两根互为相反数?b=0=0 且且0?b=00?b=0 且且0 0;a(2 2)两根互为倒数)两根互为倒数?c=1=1 且且0?a=c0?a=c 且且0 0;a(3 3)只有一个零根)只有一个零根?ca(4 4)有两个零根)有两个零根?ca=0=0 且且b0?c=00?c=0 且且 b b0 0;=0=0aa且且b=0?c=0=0?c=0a且且 b=0b=0;(5 5)至少有一个零根)至少有一个零根?c=0?c=0=0?c=0;(6 6)两根异号)两根异号?c0?a0?a、c c 异号;异号;a(7 7)两根异号,正根绝对值大于负根绝对值)两根异号,正根绝对值大于负根绝对值?c0 0 且且b0?a0?a、c c 异号且异号且 a a、b b 异号;异号;aa(8 8)两根异号,负根绝对值大于正根绝对值)两根异号,负根绝对值大于正根绝对值?c0 0 且且b0?a0?a、c c 异号且异号且 a a、b b 同号;同号;aa(9 9)有两个正根)有两个正根?c0 0,b0 0 且且0?a0?a、c c 同号,同号,a a、b b 异号且异号且0 0;aa(1010)有两个负根)有两个负根?c0 0,b0 0 且且0?a0?a、c c 同号,同号,a a、b b 同号且同号且0.0.aa6 6求根法因式分解二次三项式公式:注意:当求根法因式分解二次三项式公式:注意:当 0 0 时,二次三项式在实数范围内不能分解时,二次三项式在实数范围内不能分解.axax+bx+c=a(x-x+bx+c=a(x-x1 1)(x-x)(x-x2 2)或或 ax ax7 7求一元二次方程的公式:求一元二次方程的公式:x x2 2-(x x1 1+x+x2 2)x+xx+x1 1x x2 2=0.=0.注意:所求出方程的系数应化为整数注意:所求出方程的系数应化为整数.8 8平均增长率问题平均增长率问题-应用题的类型题之一应用题的类型题之一(设增长率为(设增长率为 x x):(1)(1)第一年为第一年为 a,a,第二年为第二年为 a(1+x),a(1+x),第三年为第三年为 a(1+x)a(1+x)2 2.(2 2)常利用以下相等关系列方程:常利用以下相等关系列方程:第三年第三年=第三年第三年或或第一年第一年+第二年第二年+第三年第三年=总和总和.9 9分式方程的解法:分式方程的解法:两边同乘最简验增根代入最简公分母(或原方程的每个分母),值 0.公分母凑元,设元,(2)换元法验增根代入原方程每个分母,值 0.换元.(1)去分母法2 22 2 b b2 4ac+bx+c=+bx+c=a x 2a2x b b 4ac2a.10.10.二元二次方程组的解法:二元二次方程组的解法:(1)代入消元法 方程组中含有一个二元一次方程;(2)分解降次法 方程组中含有能分解为((1)(2)0(3)注意:应分组为(3)(4)0()0 的方程;(1)0(2)0(1)0(2)0.(3)0(4)0(4)0(3)01111几个常见转化:几个常见转化:22222(1)x1 x22(x1 x2)2x1x2;(x1 x2)(x1 x2)4x1x2;x12(x)2;xx211或x2(x)2 2;xx21(x x)2(x x)2 4x x(x1 x2)121212x1 x2;22(x1 x2)(x1 x2)(x1 x2)4x1x2x12 x22(x1 x2)2 2x1x2,11x1 x2,(x1 x2)2(x1 x2)2 4x1x2,x1x2x1x2|x1 x2|(x1 x2)24x1x2,x1x22 x12x2 x1x2(x1 x2),x2x1x12 x22(x1 x2)24x1x2等x1x2x1x2x1x2(2)x1 x21.分类为 x1 x2 2 和 x1 x2 2;2 22.两边平方为(x1 x2)4x14x14(1)分类为和 16x23x23(或2);9x2(2)两边平方一般不用,因为增加次数.2x1(3)x14x23(4)如 x1 sin A,2可推出 x1 x221.x2 sin B 且 A B 90时,由公式sin2A cos2A 1,cosA sin B注意隐含条件:x1 0,x2 0.(5)x1,x2若为几何图形中线段长时,可利用图形中的相等关系(例如几何定理,相似形,面积等式,公式)推导出含有 x1,x2的关系式.注意隐含条件:x1 0,x2 0.(6)如题目中给出特殊的直角三角形、三角函数、比例式、等积式等条件,可把它们转化为某些线段的比,并且引入“辅助未知元 k”.(7)方程个数等于未知数个数时,一般可求出未知数的值;方程个数比未知数个数少一个时,一般求不出未知数的值,但总可求出任何两个未知数的关系.二次根式知识点:二次根式知识点:知识点一:知识点一:二次根式的概念二次根式的概念形如()的式子叫做二次根式。注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以等是二次根式,而,知识点二:取值范围知识点二:取值范围是为二次根式的前提条件,如,等都不是二次根式。有意义,是二次根式,没有意义。0()。1.?二次根式有意义的条件:由二次根式的意义可知,当 a0 时,所以要使二次根式有意义,只要使被开方数大于或等于零即可。知识点三:二次根式知识点三:二次根式()的非负性)的非负性(2.?二次根式无意义的条件:因负数没有算术平方根,所以当 a0 时,)表示 a 的算术平方根,也就是说,)是一个非负数,即注:因为二次根式()表示 a 的算术平方根,而正数的算术平方根是正数,0 的算术平方根是 0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用较多,如若,则 a=0,b=0;若知识点四:二次根式(知识点四:二次根式()的性质的性质,则 a=0,b=0;若,则 a=0,b=0。()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。注:二次根式的性质公式以反过来应用:若,则知识点五:二次根式的性质知识点五:二次根式的性质()是逆用平方根的定义得出的结论。上面的公式也可,.,如:文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。注:1、化简身,即2、时,一定要弄明白被开方数的底数 a 是正数还是负数,若是正数或 0,则等于 a 本;若 a 是负数,则等于 a 的相反数-a,即中的 a 的取值范围可以是任意实数,即不论 a 取何值,时,先将它化成与与与一定有意义;3、化简知识点六:知识点六:1、不同点:,再根据绝对值的意义来进行化简。的异同点的异同点表示的意义是不同的,中,表示一个正数 a 的算术平方根的平方,而,而中 a 可以是正实数,0,负实数。表示一个实数 a 的平方的算术平方根;在但与都是非负数,即?,而2、相同点:当被开方数都是非负数,即。因而它的运算的结果是有差别的,时,=;时,无意义,而.知识点七:二次根式的性质和最简二次根式知识点七:二次根式的性质和最简二次根式如:不含有可化为平方数或平方式的因数或因式的有2、3、a(a0)、x+y 等;含有可化为平方数或平方式的因数或因式的有4、9、a2、(x+y)2、x2+2xy+y2 等(3)最终结果分母不含根号。知识点八:二次根式的乘法和除法知识点八:二次根式的乘法和除法1.积的算数平方根的性质ab=ab(a0,b0)2.乘法法则ab=ab(a0,b0)二次根式的乘法运算法则,用语言叙述为:两个因式的算术平方根的积,等于这两个因式积的算术平方根。3.除法法则ab=ab(a0,b0)二次根式的除法运算法则,用语言叙述为:两个数的算数平方根的商,等于这两个数商的算数平方根。4.有理化根式。如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做有理化根式,也称有理化因式。知识点九:二次根式的加法和减法知识点九:二次根式的加法和减法1 同类二次根式一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。2 合并同类二次根式把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。3 二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。知识点十:二次根式的混合运算知识点十:二次根式的混合运算1 确定运算顺序2 灵活运用运算定律3 正确使用乘法公式4 大多数分母有理化要及时5 在有些简便运算中也许可以约分,不要盲目有理化知识点十一:分母有理化知识点十一:分母有理化分母有理化有两种方法I.分母是单项式如:a/b=ab/bb=ab/b?II.分母是多项式要利用平方差公式如 1/ab=ab/(ab)(ab)=ab/ab如图注意:1.根式中不能含有分母 2.分母中不能含有根式。勾股定理知识总结:勾股定理知识总结:一基础知识点:一基础知识点:1 1:勾股定理:勾股定理直角三角形两直角边 a、b 的平方和等于斜边 c 的平方。(即:a2+b2c2)要点诠释:要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在ABC中,C 90,则c a2b2,b c2a2,a c2b2)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题2 2:勾股定理的逆定理:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系 a2+b2c2,那么这个三角形是直角三角形。要点诠释:要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证 c2与 a2+b2是否具有相等关系,若 c2a2+b2,则ABC 是以C 为直角的直角三角形(若 c2a2+b2,则ABC 是以C 为钝角的钝角三角形;若c2a2+b2,则ABC 为锐角三角形)。(定理中a,b,c及a2b2 c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2c2b2,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边)3 3:勾股定理与勾股定理逆定理的区别与联系:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。4 4:互逆命题的概念:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。5 5:勾股定理的证明:勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4S S正方形EFGH S正方形ABCD,41ab(ba)2 c2,化简可证2方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积四个直角三角形的面积与小正方形面积的和为S 41abc2 2abc22大正方形面积为S (a b)2 a2 2ab b2所以a2b2 c2方法三:S梯形1(ab)(ab),S梯形 2SADE SABE 21ab1c2,化简得证2226 6:勾股数:勾股数能够构成直角三角形的三边长的三个正整数称为勾股数,即a2b2 c2中,a,b,c为正整数时,称a,b,c为一组勾股数记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等bacb用含字母的代数式表示n组勾股数:n21,2n,n21(n 2,n为正整数);2n1,2n22n,2n22n1(n为正整数)m2n2,2mn,m2 n2(mn,m,n为正整数)acbccbaa二、规律方法指导规律方法指导1勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。2勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求AaDbcc解 直 角三角形边边关系的题目。EabCB3勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。4.勾股定理的逆定理:如果三角形的三条边长 a,b,c 有下列关系:a2+b2c2,那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法5.应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)DCHEFGacB四边形知识点:四边形知识点:一、一、关系结构图:关系结构图:Ab二、知识点讲解:二、知识点讲解:1平行四边形的性质(重点):()两组对边分别平行;1(2)两组对边分别相等;是平行四边形?(3)两组对角分别相等;4)对角线互相平分;(5)邻角互补.DOCABCDAB2.平行四边形的判定(难点):DOCAB.3.3.矩形的性质:因为 ABCD()具有平行四边形的所有通性;1是矩形?(2)四个角都是直角;3)对角线相等.(DCDCOABAB (4)是轴对称图形,它有两条对称轴4 矩形的判定:矩形的判定方法:(1)有一个角是直角的平行四边形;(2)有三个角是直角的四边形;(3)对角线相等的平行四边形;(4)对角线相等且互相平分的四边形?四边形 ABCD是矩形.5.菱形的性质:因为 ABCD()具有平行四边形的所有通性;1是菱形?(2)四个边都相等;3)对角线垂直且平分对角.(ADOCB6.菱形的判定:(1)平行四边形 一组邻边等(2)四个边都相等?四边形四边形(3)对角线垂直的平行四边形DABCD 是菱形A.OC7.正方形的性质:ABCD()具有平行四边形的所有通性;1是正方形?(2)四个边都相等,四个角都是直角;3)对角线相等垂直且平分对角.(DCBDCOABAB8.正方形的判定:(1)平行四边形 一组邻边等一个直角(2)菱形 一个直角?四边形(3)矩形 一组邻边等ABCD 是正方形.名定义称两组对边对边平行;分别平行 对边相等;平 的四边形 对角相等;行 叫做平行 邻角互补;四 四边形。对角线互相平分;边形是中心对称图形定义;S=ah(a为一边性质判定面积两组对边分别相等的四 长,h 为这条边形;一组对边平行且相等的四边形;两组对角分别相等的四边形;对角线互相平分的四边形。边上的高)有一个角 除具有平行四边形的性质外,有三个角是直角的四边 S=ab(a为一边矩 是直角的 还有:四个角都是直角;形是矩形;形 平行四边 对角线相等;形叫做矩 既是中心对称图形又是轴长,b 为另一对角线相等的平行四边 边长)形是矩形;形对称图形。定义。有一组邻 除具有平行四边形的性质外,四条边相等的四边形是 S=ah(a 为一边相等的 还有菱形;边长,h 为这平行四边 四边形相等;对角线垂直的平行四边菱条边上的高);形叫做菱 对角线互相垂直,且每一条 形是菱形;形(b、c 为两形。对角线平分一组对角;定义。既是中心对称图形又是轴对称图形。条对角线的长)(a 为有一组邻 具有平行四边形、矩形、菱形有一组邻边相等的矩形边相等且 的性质:四个角是直角,四是正方形;有一个角正是直角的方平行四边形形叫做正方形条边相等;对角线相等,互相垂直平有一个角是直角的菱形是正方形;边长);(b为对角线长)分,每一条对角线平分一组对 定义。角;既是中心对称图形又是轴对称图形。数据的集中趋势和离散程度知识点:数据的集中趋势和离散程度知识点:知识点知识点1 1:表示数据集中趋势的代表:表示数据集中趋势的代表平均数、众数、中位数都是描述一组数据集中趋势的特征数,只是描述的角度不同,其中平均数的应用最为广泛。知识点知识点2 2:表示数据离散程度的代表:表示数据离散程度的代表极差的定义:一组数据中最大值与最小值的差,能反映这组数据的变化范围,我们就把这样的差叫做极差。极差=最大值最小值,一般来说,极差小,则说明数据的波动幅度小。知识点知识点3 3:生活中与极差有关的例子:生活中与极差有关的例子在生活中,我们经常用极差来描述一组数据的离散程度,比如一支篮球队队员中最高身高与最矮身高的差。一家公司成员中最高收入与最低收入的差。知识点知识点4 4:平均差的定义:平均差的定义在一组数据 x1,x2,xn中各数据与它们的平均数的差的绝对值的平均数即T=叫做这组数据的“平均差”。“平均差”能刻画一组数据的离散程度,“平均差”越大,说明数据的离散程度越大。知识点知识点5 5:方差的定义:方差的定义在一组数据x1,x2,xn中,各数据与它们的平均数差的平方,它们的平均数,即来描述这组数据的离散程度,并把 S 叫做这组数据的方差。2S=知识点知识点6 6:标准差:标准差2方差的算术平方根,即用 S=度,并把它叫做这组数据的标准差。知识点知识点7 7:方差与平均数的性质:方差与平均数的性质若 x1,x2,xn的方差是 S2,平均数是,则有x1+b,x2+bxn+b 的方差为 S2,平均数是+bax1,ax2,axn的方差为 a2s2,平均数是 aax1+b,ax2+b,axn+b 的方差为 a2s2,平均数是 a+b来描述这一组数据的离散程

    注意事项

    本文(沪科版八年级数学下知识点总结.pdf)为本站会员(w****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开