《高考试卷模拟练习》浙江省杭州市2013届高三第一次高考科目教学质量检测数学(理)试题新模拟.doc
-
资源ID:72509422
资源大小:1.60MB
全文页数:12页
- 资源格式: DOC
下载积分:15金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
《高考试卷模拟练习》浙江省杭州市2013届高三第一次高考科目教学质量检测数学(理)试题新模拟.doc
一、选择题:1若复数,其中是虚数单位,则复数的模为( ) A. B. C. D. 22设R,则“”是“直线与直线平行”的( ) A. 充分不必要条件B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件3设函数,则下列结论中正确的是( ) A. B. C. D. 8已知集合,集合,若,则实数可以取的一个值是( ) A. B. C. D. 9设函数,则函数的零点的个数为( ) A. 4B. 5C. 6D. 710设等差数列满足:,公差. 若当且仅当时,数列的前项和取得最大值,则首项的取值范围是( )A. B. C. D. 二、填空题:11二项式的展开式中第四项的系数为 12从中任取三个数字,组成无重复数字的三位数中,偶数的个数是 (用数字回答)13无穷数列 的首项是,随后两项都是,接下来项都是,再接下来项都是,以此类推.记该数列为,若,则 17如图,在扇形OAB中,C为弧AB上的一个动点.若,则的取值范围是 20(本题满分14分)已知数列满足,其中N*. ()设,求证:数列是等差数列,并求出的通项公式; ()设,数列的前项和为,是否存在正整数,使得对于N*恒成立,若存在,求出的最小值,若不存在,请说明理由.21(本题满分15分)已知椭圆C:的离心率为,右焦点到直线 的距离为. ()求椭圆C的方程; ()若直线 与椭圆C交于A、B两点,且线段AB中点恰好在直线上,求OAB的面积S的最大值.(其中O为坐标原点).22(本题满分15分)已知函数 ()当时,求函数的极小值;()当时,过坐标原点作曲线的切线,设切点为,求实数的值;()设定义在上的函数在点处的切线方程为当时,若在内恒成立,则称为函数的“转点”当时,试问函数是否存在“转点”.若存在,请求出“转点”的横坐标,若不存在,请说明理由 4.C【解析】由题意,得:。 显然,易得,5.B【解析】由题意,得: 当时,执行最后一次循环; 当时,循环终止,这是关键。输出。6.D【解析】由题意,分或两种情况: (1)时,此时在上单调递减 故 (2)时,此时在上单调递增来源:学科网ZXXK 故9.C【解析】由题意,的零点,即的交点。 易绘的函数图象,且 当时, 依次类推,易得 又, 同理, 不难绘出的函数图象如右,显然零点共6个,其中左边1个,右边5个。10.B【解析】先化简: 又当且仅当时,数列的前项和取得最大值,即: 14. 【解析】由题意:, 15. 【解析】由题意:设弦长为 圆心到直线的距离16. 【解析】由题意,绘出可行性区域如下: 设,即求的截距的最大值。 因为,不妨找出附近的“整点”。 有(3, 3)、(3, 4)满足. 显然过(3, 4)时,最大.17【解析】方法(一):特殊点代入法。 C与A重合时,此时; C与B重合时,此时. 注意到,C从B点运动至A点时,x逐渐变大,y逐渐变小。 显然,一开始x趋于0,而y趋于, 故的范围受y的影响较大。 故猜想,来源:学科网ZXXK来源:Zxxk.Com 方法(二):设扇形的半径为 考虑到C为弧AB上的一个动点,. 显然 两边平方: 消:,显然 得:, 故. 不妨令 , 所以在上单调递减,,得。19.【解析】(I)由题意知,当且仅当时等号成立,所以,当取得最大值时.(II)当时,即甲箱中有个红球与个白球,所以的所有可能取值为则, ,,所以红球个数的分布列为于是.依题意要使对于恒成立,只需解得或,所以的最小值为.得到,当且仅当取到等号,检验成立.22.【解析】(I)当时,当时,来源:学。科。网当时,当时.所以当时,取到极小值。(II),所以切线的斜率整理得,显然是这个方程的解,又因为在上是增函数,所以方程有唯一实数解,故.若时,即在上是增函数,来源:学科网ZXXK当时,当时,即点为“转点”,故函数存在“转点”,且是“转点”的横坐标.