2019-2020学年北师大版八年级数学上册第一次月考试卷(含答案).pdf
-
资源ID:72518770
资源大小:829.11KB
全文页数:13页
- 资源格式: PDF
下载积分:3.99金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2019-2020学年北师大版八年级数学上册第一次月考试卷(含答案).pdf
2019-2020 学年八年级数学上册第一次月考试卷 一、选择题(本大题共 10 小题,每小题 3 分,共 30 分,在每小题给出的四个选项中,只有一项是最符合题目要求的)1等腰三角形的腰长为 10,底长为 12,则其底边上的高为()A13 B8 C25 D64 2一个直角三角形的两条边分别是 6 和 8,则第三边是()A10 B12 C12 或 D10 或 3三角形的三边长为 a,b,c,且满足(b+c)2a2+2bc,则这个三角形是()A等边三角形 B钝角三角形 C直角三角形 D锐角三角形 4下列说法不正确的是()A1 的平方根是1 B1 的立方根是1 C4 是 2 的平方根 D3 是 9 的平方根 5下列各式中无意义的是()A B C D 6在下列各数中,是无理数的是()A B C3.1415926 D 7我们知道是一个无理数,那么的大小在哪两个数之间()A3 和 4 B4 和 5 C19 和 20 D20 和 21 8若 a,b|,c,则 a、b、c 的大小关系是()Aabc Bbac Cbca Dcba 9如图,ABCD 于 B,ABD 和BCE 都是等腰直角三角形,如果 CD17,BE5,那么 AC的长为()A12 B7 C5 D13 10三角形三边之比分别为(1)(2)3:4:5(3)1:2:3(4)4:5:6,其中可以构成直角三角形的有()A1 个 B2 个 C3 个 D4 个 二、填空题(本大题共 5 小题,每小题 3 分,共 15 分,把答案填在题中横线上)11如图为某楼梯,测得楼梯的长为 5 米,高 3 米,计划在楼梯表面铺地毯,地毯的长度至少需要 米 12在 RtABC 中,斜边 AB4,则 AB2+AC2+BC2 13如图,数轴上点 A 所表示的实数是 14已知 a,b 分别是的整数部分和小数部分,则 2ab 的值为 15如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形 A,B,C,D 的面积之和为 cm2 三、解答题(本大题共 6 小题,共 55 分,解答应写出文字说明,证明过程或演算步骤)16把下列各式化为最简二次根式;(1)(2)(3)(4)17(8 分)解下列方程;(1)4x225;(2)(x0.5)30.027 18(7 分)如图,正方形网格中的每个小正方形的边长都是 1,每个小格的顶点就做格点,以格点为顶点分别按下列要求画三角形;使三角形的三边长分别为 1,3,(在图中画出一个即可);使三角形为钝角三角形且面积为 3(在图中画出一个即可),并计算你所画三角形的三边的长 19(8 分)已知,求 7(x+y)20 的立方根 20(10 分)如图,在四边形 ABCD 中,BCDC2,AD3,AB1,且C90,求B 的度数 21(10 分)如图,长方形纸片 ABCD 沿对角线 AC 折叠,设点 D 落在 D处,BC 交 AD于点 E,AB6cm,BC8cm,求阴影部分的面积 参考答案与试题解析 一、选择题(本大题共 10 小题,每小题 3 分,共 30 分,在每小题给出的四个选项中,只有一项是最符合题目要求的)1等腰三角形的腰长为 10,底长为 12,则其底边上的高为()A13 B8 C25 D64【分析】先作底边上的高,由等腰三角形的性质和勾股定理即可求出此高的长度【解答】解:作底边上的高并设此高的长度为 x,根据勾股定理得:62+x2102,解得:x8 故选:B 【点评】本题考点:等腰三角形底边上高的性质和勾股定理,等腰三角形底边上的高所在直线为底边的中垂线然后根据勾股定理即可求出底边上高的长度 2一个直角三角形的两条边分别是 6 和 8,则第三边是()A10 B12 C12 或 D10 或【分析】设第三条边为 x,再根据 8 为直角边与斜边两种情况求解即可【解答】解:设第三条边为 x,当 8 为直角边时,x10;当 8 为斜边时,x 综上所述,第三条边的长度是 10 或 2 故选:D【点评】本题考查的是勾股定理,在解答此题时要进行分类讨论,不要漏解 3三角形的三边长为 a,b,c,且满足(b+c)2a2+2bc,则这个三角形是()A等边三角形 B钝角三角形 C直角三角形 D锐角三角形【分析】展开等式后,利用勾股定理的逆定理解答即可【解答】解:因为三角形的三边长满足(b+c)2a2+2bc,可得:b2+c2a2,所以这个三角形是直角三角形,故选:C【点评】此题考查了勾股定理的逆定理的应用,熟练掌握因式分解的方法是解本题的关键 4下列说法不正确的是()A1 的平方根是1 B1 的立方根是1 C4 是 2 的平方根 D3 是 9 的平方根【分析】直接利用平方根以及立方根的定义计算得出答案【解答】解:A、1 的平方根是1,正确,不合题意;B、1 的立方根是1,正确,不合题意;C、4 是 16 的一个平方根,故此选项错误,符合题意;D、3 是 9 的平方根,正确,不合题意;故选:C【点评】此题主要考查了立方根和平方根,正确掌握相关定义是解题关键 5下列各式中无意义的是()A B C D【分析】直接利用二次根式的定义分析得出答案【解答】解:A、,有意义;B、,有意义;C、,有意义;D、,无意义 故选:D【点评】此题主要考查了二次根式的定义,正确把握定义是解题关键 6在下列各数中,是无理数的是()A B C3.1415926 D【分析】根据无理数的三种形式解答即可【解答】解:A 是无理数;B2,是整数,属于有理数;C3.1415926 是有限小数,属于有理数;D2,是整数,属于有理数;故选:A【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:开方开不尽的数,无限不循环小数,含有 的数 7我们知道是一个无理数,那么的大小在哪两个数之间()A3 和 4 B4 和 5 C19 和 20 D20 和 21【分析】直接得出的取值范围进而得出答案【解答】解:45,34 故选:A【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键 8若 a,b|,c,则 a、b、c 的大小关系是()Aabc Bbac Cbca Dcba【分析】根据实数大小的比较方法比较即可【解答】解:a,b|,c2,2,bac,故选:B【点评】本题考查了实数大小的比较,熟记比较的方法是解题的关键 9如图,ABCD 于 B,ABD 和BCE 都是等腰直角三角形,如果 CD17,BE5,那么 AC的长为()A12 B7 C5 D13【分析】先根据BCE 等腰直角三角形得出 BC 的长,进而可得出 BD 的长,根据ABD 是等腰直角三角形可知 ABBD,在 RtABC 中利用勾股定理即可求出 AC 的长【解答】解:BCE 等腰直角三角形,BE5,BC5,CD17,DBCDBE17512,ABD 是等腰直角三角形,ABBD12,在 RtABC 中,AB12,BC5,AC13 故选:D【点评】本题考查的是等腰直角三角形的性质及勾股定理,熟知等腰三角形两腰相等的性质是解答此题的关键 10三角形三边之比分别为(1)(2)3:4:5(3)1:2:3(4)4:5:6,其中可以构成直角三角形的有()A1 个 B2 个 C3 个 D4 个【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可【解答】解:设每份为 k,则(1)(k)2+(2k)2(k)2;(2)(3k)2+(4k)2(5k)2;(3)k2+(2k)2(3k)2;(4)(4k)2+(5k)2(6k)2,可以构成直角三角形的是 1 个 故选:A【点评】本题考查勾股定理的逆定理的应用判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可 二、填空题(本大题共 5 小题,每小题 3 分,共 15 分,把答案填在题中横线上)11如图为某楼梯,测得楼梯的长为 5 米,高 3 米,计划在楼梯表面铺地毯,地毯的长度至少需要 7 米 【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可【解答】解:由勾股定理得:楼梯的水平宽度4,地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是 3+47 米 故答案为 7【点评】本题考查了勾股定理的知识,与实际生活相联系,加深了学生学习数学的积极性 12在 RtABC 中,斜边 AB4,则 AB2+AC2+BC2 32 【分析】根据勾股定理即可求得该代数式的值【解答】解:在 RtABC 中,斜边 AB4,AB2BC2+AC216,AB216,AB2+BC2+AC232 故答案为:32【点评】本题考查了利用勾股定理解直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方 13如图,数轴上点 A 所表示的实数是 【分析】根据勾股定理,可得斜线的长,根据圆的性质,可得答案【解答】解:由勾股定理,得 斜线的为,由圆的性质,得:点表示的数为,故答案为:【点评】本题考查了实数与数轴,利用勾股定理得出斜线的长是解题关键 14已知 a,b 分别是的整数部分和小数部分,则 2ab 的值为 9 【分析】先股算术的大致范围,然后再求得 a、b 的值,最后代入计算即可【解答】解:91316,34 a3,b3 2ab23(3)6+39【点评】本题主要考查的是估算无理数的大小,求得 a、b 的值是解题的关键 15如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形 A,B,C,D 的面积之和为 49 cm2 【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形 A,B,C,D 的面积之和49cm2 故答案为:49cm2【点评】熟练运用勾股定理进行面积的转换 三、解答题(本大题共 6 小题,共 55 分,解答应写出文字说明,证明过程或演算步骤)16把下列各式化为最简二次根式;(1)(2)(3)(4)【分析】(1)利用二次根式的性质化简;(2)根据二次根式的除法法则运算;(3)利用平方差公式计算;(4)先把各二次根式化简为最简二次根式,然后合并即可【解答】解:(1)原式10 10 6;(2)原式4+5 4+10;(3)原式23 1;(4)原式2+3 5【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍 17(8 分)解下列方程;(1)4x225;(2)(x0.5)30.027【分析】(1)直接利用平方根的定义计算得出答案;(2)直接利用立方根的定义计算得出答案【解答】解:(1)4x225 故 x2,解得:x;(2)(x0.5)30.027 故 x0.50.3 则 x0.8【点评】此题主要考查了立方根和平方根,正确掌握相关定义是解题关键 18(7 分)如图,正方形网格中的每个小正方形的边长都是 1,每个小格的顶点就做格点,以格点为顶点分别按下列要求画三角形;使三角形的三边长分别为 1,3,(在图中画出一个即可);使三角形为钝角三角形且面积为 3(在图中画出一个即可),并计算你所画三角形的三边的长 【分析】(1)三角形的三边长分别为 1,3,恰好为勾股数,利用网格直接作出即可,(2)利用三角形的面积为 3,固定底为整数,高为整数,例如 23 等,即可画出;再利用勾股定理求得三角形的三边的长【解答】解:如图,ABC 即为所求 如图,ABC 即为所求 ABC 的三边的长分别为:AB2,AC5,BC 【点评】此题主要考查勾股定理及三角形的面积 19(8 分)已知,求 7(x+y)20 的立方根【分析】根据被开方数大于等于 0,分母不等于 0 列式求出 x 的取值范围,再根据非负数的性质列式求出 x、y 的值,然后代入代数式进行计算,再根据立方根的定义解答【解答】解:由题意得,5x0,解得 x5,y2x0,x2250,解得 x5,y10,7(x+y)207(510)20125,(5)3125,7(x+y)20 的立方根是5【点评】本题考查了非负数的性质:几个非负数的和为 0 时,这几个非负数都为 0 20(10 分)如图,在四边形 ABCD 中,BCDC2,AD3,AB1,且C90,求B 的度数 【分析】连接 BD,根据勾股定理的逆定理得出ABD 为直角三角形,进而解答即可【解答】解:连接 BD,在 RtBCD 中,BD2BC2+DC28 BCDC,BDCDBC45 在ABD 中,AB2+BD28+12932AD2,ABD 为直角三角形,故ABD90,BABD+DBC90+45135【点评】本题考查的是勾股定理、勾股定理的逆定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键 21(10 分)如图,长方形纸片 ABCD 沿对角线 AC 折叠,设点 D 落在 D处,BC 交 AD于点 E,AB6cm,BC8cm,求阴影部分的面积 【分析】先根据翻折变换的性质得出EACDAC,再由平行线的性质得出DACACB,故可得出 AECE,设 CEx,则 BE8x,在 RtABE 中根据勾股定理可求出 x 的值,进而得出结论【解答】解:ADC 由ADC 翻折而成,EACDAC,ADBC,DACACB,EACACB,AECE,设 CEx,则 BE8x,在 RtABE 中,AE2AB2+BE2,即 x262+(8x)2,解得 x,S阴影CEAB6【点评】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键