1.4.1用空间向量研究直线、平面的位置关系 第2课时课件(共52张PPT)高二数学人教A版(2019)选择性必修第1册 第一章.pptx
-
资源ID:72528876
资源大小:2.43MB
全文页数:52页
- 资源格式: PPTX
下载积分:14金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
1.4.1用空间向量研究直线、平面的位置关系 第2课时课件(共52张PPT)高二数学人教A版(2019)选择性必修第1册 第一章.pptx
第一章空间向量与立体几何第一章空间向量与立体几何1.4空间向量的应用1.4.1用空间向量研究直线、平面的位置关系第2课时空间中直线、平面的垂直必备知识必备知识探新知探新知关键能力关键能力攻重难攻重难课堂检测课堂检测固双基固双基素养目标素养目标定方向定方向素养作业素养作业提技能提技能返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)素养目标素养目标定方向定方向返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)课程标准课程标准学法解读学法解读1理解直线的方向向量和平面的法向量2能用向量语言表述直线与直线、直线与平面、平面与平面的垂直关系1能用向量语言表述直线与直线、直线与平面、平面与平面的垂直关系(数学抽象)2能用向量方法证明必修内容中有关直线、平面垂直关系的判定定理(逻辑推理)3能用向量方法证明空间中直线、平面的垂直关系(逻辑推理)返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)必备知识必备知识探新知探新知 返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)设直线l1,l2的方向向量分别为u1,u2,平面,的法向量分别为n1,n2,则知识点空间中垂直关系的向量表示线线垂直l1l2_线面垂直l1_面面垂直_u1u2u1u20u1n1R,u1n1n1n2n1n20返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)思考:怎样用语言叙述利用直线的方向向量与平面的法向量判断垂直关系?提示:(1)若证线线垂直,则证直线的方向向量垂直;(2)若证线面垂直,则证直线的方向向量与平面的法向量平行;(3)若证面面垂直,则证两平面的法向量垂直返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)关键能力关键能力攻重难攻重难返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)题型探究型探究题型一利用向量方法证明线线垂直如图,在四棱锥PABCD中,PA平面ABCD,四边形ABCD是矩形,PAAB1,点F是PB的中点,点E在边BC上移动求证:无论点E在边BC上的何处,都有PEAF分析只需证明直线PE与AF的方向向量互相垂直即可典例 1返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)规律方法利用向量方法证明线线垂直的方法(1)坐标法:建立空间直角坐标系,写出相关点的坐标,求出两直线方向向量的坐标,然后通过数量积的坐标运算法则证明数量积等于0,从而证明两条直线的方向向量互相垂直(2)基向量法:利用空间向量的加法、减法、数乘运算及其运算律,结合图形,将两直线所在的向量用基向量表示,然后根据数量积的运算律证明两直线所在的向量的数量积等于0,从而证明两条直线的方向向量互相垂直返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)题型二利用向量方法证明线面垂直在棱长为1的正方体ABCDA1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点求证:D1M平面EFB1典例 2返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)规律方法坐标法证明线面垂直的两种思路(1)根据线面垂直的判定定理证明:求出直线的方向向量,在平面内找两条相交直线,并分别求出表示它们的方向向量,计算两组向量的数量积为0,得到该直线与平面内的两条相交直线都垂直(2)法向量法:求出直线的方向向量与平面的法向量,向量法判断直线的方向向量与平面的法向量平行返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)【对点训练】如图所示,正三棱柱ABCA1B1C1的所有棱长都为2,D为CC1的中点求证:AB1平面A1BD返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)证明如图所示,取BC的中点O,连接AO因为ABC为正三角形,所以AOBC因为正三棱柱ABCA1B1C1中,平面ABC平面BCC1B1,所以AO平面BCC1B1返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)题型三利用向量方法证明面面垂直如图所示,在直三棱柱ABCA1B1C1中,ABBC,ABBC2,BB11,点E为BB1的中点,证明:平面AEC1平面AA1C1C典例 3分析要证明两个平面垂直,由两个平面垂直的条件,可证明这两个平面的法向量垂直,转化为求两个平面的法向量n1,n2,证明n1n20返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)解析由题意得AB,BC,B1B两两垂直以点B为原点,BA,BC,BB1所在直线分别为x,y,z轴,建立如图所示的空间直角坐标系返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)规律方法1利用空间向量证明面面垂直通常有两个途径:一是利用两个平面垂直的判定定理将面面垂直问题转化为线面垂直进而转化为线线垂直;二是直接求解两个平面的法向量,由两个法向量垂直,得面面垂直2向量法证明面面垂直的优越性主要体现在不必考虑图形的位置关系,恰当建系或用基向量表示后,只需经过向量运算就可得到要证明的结果,思路方法“公式化”,降低了思维难度返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)题型四探究性问题在正方体ABCDA1B1C1D1中,E是棱BC的中点,试在棱CC1上求一点P,使得平面A1B1P平面C1DE典例 4返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)解析建立如图所示的空间直角坐标系设正方体的棱长为1,P(0,1,a),则A1(1,0,1),B1(1,1,1),返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)规律方法空间向量适合解决这类立体几何中的探索性问题,它无须进行复杂的作图、论证、推理,只需通过坐标运算进行判断解题时,把要说明成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解”“是否有规定范围的解”等,所以使问题的解决更简单、有效,应善于运用这一方法解题返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)【对点训练】如图,在直三棱柱ABCA1B1C1中,底面是以ABC为直角的等腰直角三角形,AC2a,BB13a,D是A1C1的中点,E是B1C的中点返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)解析(1)以B为坐标原点,建立如图所示的空间直角坐标系返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)易易错警示警示在四面体ABCD中,AB平面BCD,BCCD,BCD90,ADB30,E、F分别是AC、AD的中点判断平面BEF与平面ABC是否垂直典例 5返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)返回导航第一章空间向量与立体几何数学(选择性必修第一册 RJA)