计算机控制技术第三章 习题答案.docx
+.=1-esT -1<1第3章习题3-1 解:/(5)= £1£一2=1 +6卬k=0(2) F(s) =0/Ul + 0rL + 产产 + =_1白1-wsT T ' e aaTesT<1<13-2 解:(1) F(z)= >1. z" = 1 + Z7+ Z-2k=01-z-1z-1z<1(2)b(Z)=沙Z-k = 1 + /z- + / z-2 + .= k=0-aTz- z-aT8/o j-» / 、 2kT A i . 2T 1 . 4T 2 .r (z) / z = + e z + e z H k=03-3解:00T -1 a z<12T 一e zi -27-1-2T - i '1-e z e z1/(z) = Z /(攵T)Z” = zT + Z3 + Z- + =Z Zk=0k=1 Z2z2-lcc F(z) = Z以kT)zk = 1 _ z- + z-2 - z-3 + =£(-z-l)k=0k=03-4 解:(1) Zt = Zt - 1(/) = ZkT = kTz-k = Tz-k-1k=0k=08z/z = Z(T)"r(z“)z2=0dz<18/7/ 8= -TzY z-k =-Tz(Y-z-k) £)dzdz根据微分定理,进一步可得00k=0-k. T d zz-z TzZ ) = -Tz () = -Tz- =7dz z-1(z-1)2(z-1)2(2) Zt . 1(/ -T) = -Tz (z-1dz z-1(z-1)288/A 6J研二牙熹Z乳7 y】T2z(z + 1)0000 F(s)= F(5)= £= £ H(2+s)4 =k=0k=0(4)由位移定理ZL W八及中z正鲁彩T2zeazeaT +Y)Q八IP3-5 解:(1) F(s) =s+b s+aFz) =z-一bT z-ez-eaT f(5)=4+ s s4 = s1 7-ly-0- 5“52(5 + l) 5-0&二一5,(5 As1-2_1一(s + l)+ D/0=5,则71S S + lTz77查表b(z) = 5-5 + 5(Z-1)2 Z-lZ e”CO36解:查表得了= 0.5", /(幻=0.5%,/*=2(05"项”4)k=0则 F(z) =z zz-e-TF(z)_ l-e-T 1 1z (z-l)(z-r) z-l z-(8查表/«) = 0) £-,f(k) = u(k) eT , /*Q) = Z()k=0,二口hr2一年一匕则小)=全一-皆8查表/。)= 2"-1一八 f(k) = 2k_"k, /*«) = 22'1一幻(”左7)2=0也=上则/二四三生 z (z 2)(z 1) z 2 (z 1) z 1z 2 (z 1) z 1查表 f(t)= 202”-2t-9,f(k) = 20-2k-2k-9u(k),8f (0 = Z 20 2% 2攵一9u(k)6(t- kT)k=0F(z) =z2z2(z-l)3z3-3z2+3z-1, 由 长 除法 可得F(z) = z-1+ 3z2 + 6z3 +1 Oz-4 + ,贝(J /* =bQ - T) + 35(一 27) + 65(,一 3T) +1(W 47)+ 3-7 解:(1)初值:e(O) = lim£(z) = limz>8Z>00(z-0.5)(z-l)=bz2终值:e3)=H(z-l)E(z) = l呼zT)(”o.5)(”d=2(2)初值:e(0)初imE(z) = limZ>00z>002=1 , (z-0.8)(z-0.1)终值:e(8)= lim(z-l)E(z) = lim(z-l)Zf 1Zf 1z2(z-0.8)(z-0.1)3-8解:(1)对差分方程进行z变换,得zzC(z)- zc(O)-bC(z) = (z-b)C(z)=, z-aiz1 z z则 C(z) =(),(z-ci)(z-b) a-b z-a z-bz反变换,得c(幻= '(/-/) a-b(2)对差分方程进行z变换,得22z(z2+4z + 3)C(z) = - ZkT =,则 C(z) =2z(z-1)2(z2+4z + 3)C(z)z(z-1)2(z + 1)(z + 3) (z-1)2BCDH11,z-1 z+1 z+3A = lim(z-1)2= 1Zf 1ZB = lim :-,zf dz z2 +4z + 316(z-1)2(z + 3)(Z l)2(Z + l)h3 16 'Z 反变换,c(A)=-L4A 3 + 4(1)"(3)”16(3)对差分方程进行z变换,得: z2C(z) - z2c(0) - zc(l) + 5zC(z) -5zc(0) + 6C(z) = 0,由题意可知:c(0) = O,c(l) = 1,得:(z2 +5z + 6)C(z) = z则c=77口UK z反变换,w)*2)J-3)3因此:c(10) = 210-31(,(4)对差分方程进行2变换,得:z2C(z) - z2c(0) zc(l) + 2zC(z) 2zc(0) + C(z) = 由题意可知:C(0) = O,c(l) = 1 ,得:(z?+2z + l)c(z) = Zd7(z l)z3 +2z2 +2z则C(z)J. +,z,使用长除法可得: z -2z +1C(z) = z-1 + 2z-2 + 4z3 + 4Z-4 +7z-5+ 6z-6 +10z7 + 8z-8 +13z-9 +10z-w + 前 10 项的值为:-T) + 28k-2T) + 46(k-3T) +-4T) + 7(-5T)+65(左一6T) +1 Q3(k 7T) + 85(攵-8T) + 133(k 97) +105(% 10T)3-9解:(1)对差分方程进行z变换,得:(1 + 0.5zi z2 + 0.5z-3)C(z) = (4-z-2- 0.6z-3)7?(z)因此所备(4-z20.6z-3)(1 + 0.5Z-z2+0.5z3)对差分方程进行Z变换,得:(z3 +axz1 +tz3)C(z) = (Z?oz3 +Z?9z + Z?3)7?(z)因止匕 G(z) =、(z)仇z +4z + 4 _ 4z +&z +Z?o R(z) z3 +a1z2 +/6z3z_3 +a1z1 +13-10 解:(1)能,C(z) = RG(z)(2)能(输出加虚拟开关),C(z) = H(z)G(z)(3)能(输出加虚拟开关),。=l + GH(z)不能,C(z) =RG1 + GH 能, 0二需1 + G(z)(z),人才为 、 RG】(z)G,(z) 不能°二中而3-11解:原图可以简化下图所示:-sT)1 e G(z) = Z G0(s) =(l-z-l)Z -G0(s)屿+ O2(Z)K1 + Z-)Z %(s)1 + R(z)(1 + zT)ZGo(s)3-12 解:G(z) = Z1 八一小1 - es2(s + l)0.368z +0.264(z-l)(z-0.368)G(z) 0.368z +0.264脉冲传递函数:(z) = 亘,R(z) 1 + G(z) (z2-z+ 0.632)单位阶跃响应:y”r二滞铝建/古/ 1- zi -ix z(0.368z + 0.264)终值:e(Go) = hm(l-z i)%- = 1zf (z-1)(z2-z + 0.632)