教案概要.docx
第四章是“图形认识初步”章节分析一、教学内容本章的主要内容是图形的初步认识,展示现实生活中多姿多彩的图形世界和将要学习的图形与几何知识的之间的密切联系。接着,教科书从学生生活中熟悉的长方体形物体入手,让学生经历从具体物体的外形抽象出几何体、平面、直线、点等概念 以及立体图形和平面图形的概念;让学生通过从不同方向看立体图形得到平面图形和想象儿何体的展开图的过程,认识可以用平面 图形表示立体图形,以及立体图形与平面图形的联系.并进一步从线与线相交形成点,面与面相交形成线,点动成线,线动成面, 面动成体的角度进一步认识基本几何图形:点、线、面、体,并初步引入几何图形的集合观点。在此基础上,学习最基本的平面图 形一一直线、射线、线段和角的知识。二、教学目标:1、知识技能:通过实物和具体模型,了解从物体外形抽象出来的几何体、平面、直线和点等概念,能识别一些基本儿何体 (长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等).初步了解立体图形与平面图形的概念.逐步掌握学过的几何图形的表示方 法,能根据语句画出相应的图形,会用语句描述简单的图形.2、教学思考:通过丰富的实例,进一步认识角,理解角的两种描述方法,掌握角的表示方法;会比较角的大小,认识度、 分、秒,并会进行简单的换算,会计算角度的和与差;了解角的平分线的概念,了解余角和补角的概念,知道”等角的补角相等” ”等角的余角相等”的性质.3、问题解决:能画出从不同方向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形;了 解直棱柱、圆柱、圆锥的展开图,能根据展开图想象相应的几何体,制作立体模型,在平面图形和立体图形相互转换的过程中,初 步培养空间观念和几何直觉.进一步认识直线、射线、线段的概念和它们的联系与区别,掌握它们的表示方法;掌握关于直线和线 段的基本事实:两点确定一条直线,两点之间线段最短,了解这些性质在生活和生产实际中的应用;理解两点之间距离的意义;直 观地了解平面上两条直线具有相交与不相交两种位置关系;会比较线段的大小,理解线段的和、差及线段的中点概念,会画一条线 段等于已知线段.4、情感态度:初步认识图形是有效描述现实世界的重要工具,初步应用图形与几何的知识解释生活中的现象以及解决简单 的实际问题,激发对学习图形与儿何的兴趣,通过与其他同学的交流活动,初步形成积极参与数学活动,主动与他人合作交流的意 识.三、教学重点:本章的内容是以后学习的重要基础,如何通过结合立体图形与平面图形的互相转化的学习来发展空间观念,一些重 要的概念、性质等是本章的一项重点内容四、教学难点:如何从具体事物中抽象出各种具体几何图形?如何掌握各种几何图形的概念?如何区分一些相近的概念?另外,对 图形的表示和画图、作图,对几何语言的学习、运用等,都需要一个学习并逐渐熟悉的过程。这些,对于今后的学习都很重要,同 时也是本章的难点五、课时分配;本章共安排了 4个小节以及两个选学内容,教学时间约需13课时,大体分配如下(仅供参考):4.1 几何图形约4课时4.2 直线、射线、线段 约2课时4.3 角约4课时4.4 课题学习:制作长方体形状的包装纸盒约1课时小结与复习约2课时七年级数学集体备课教案上课时间周 编号课题课题4.2直线、射线、线段(1)课型新授课时1主备教师:李永琴教学目标1、知识技能:会用字母表示直线、射线、线段,会根据语言描述画出图形;2、教学思考:1 .能在现实情境中,经历画图的数学活动过程,3、问题解决:理解并掌握直线的性质,能用几何语言描述直线性质;4、情感态度:体会数学的价值教学重点理解并掌握直线性质,会用字母表示图形和根据语言描述画出图形;教学难点理解并掌握直线性质,会用字母表示图形和根据语言描述画出图形;教学方法教学过程包括课题导入,教学进程,自学指导,教师点拨等一、知识链接1 .在小学已经学过了直线、射线、线段.请你画出一条直线、一条射线、一条线段?直线射线线段2 填写下列表格:端点个数延伸方向能否度量线段射线直线二、自主探究1、直线的性质(1)如果你想将一根细木条固定在墙上,至少需要几个钉子?操作一下,试试看。答:(2)经过一个已知点的直线,可以画多少条直线?请画图说明。答: 0 (3)经过两个已知点画直线,可以画多少条直线?请画图试试。答: AB猜想:如果将细木条抽象成直线,将钉子抽象为点,你可以得到什么结论?直线的基本性质:经过两点有条直线,并且 条直线;简述为:举例说明直线的性质在日常生活中的应用:(1)在挂窗帘时,只要在两边旬两颗钉子扯上线即可,这是因为(2)建筑工人在砌墙时拉参照线,木工师傅锯木板时,用墨盒弹墨线,都是根据(3)你还能从生活中举出应用直线的基本性质的例子吗?试试看:2、直线有两种表示方法:用一个小写字母表示;用两个大写字母表示。-10-直线a直线AB平面上一个点与一条直线的位置有什么关系? 点在直线上;点在直线外。点A在直线点B在直线外当两条直线有一个共公点时,我们就称这两条直线相交,这个公共点叫做它们的交点。3、射线和线段的表示方法:如图。显然,射线和线段都是直线的一部分。图中的线段记作线段AB或线段a;图中的射线记作射线0A或射线mo注意:用两个大写字母表示射线时,表示端点的字母一定要写在前面。思考:直线、射线和线段有什么联系和区别?【拓展训练】:L如图,线段AB上有两点C、D,则共有 条线段。ACDB2.变形题:往返于甲、乙两地的客车中途要停靠三个车站,有多少种不同的票价? 要准备多少种不同的车票?【课堂小结】:通过本节课的学习你有什么收获?【课堂测试】1 .下列给线段取名正确的是A.线段M B.线段m C.线段Mm D.线段mn 2 .如图,若射线AB上有一点C,下列与射线AB是同一条射线的是()A.射线BAC.射线BCB.射线ACD.射线CB3.下列语句中正确的个数有直线MN与直线NM是同一条直线 射线AB与射线BA是同一条射线线段PQ与线段QP是同一条线段直线上一点把这条直线分成的两部分都是射线.A. 1个 B. 2个 C. 3个 D. 4个4.课本126页练习课后作业板书设计-11 -教后反思七年级数学集体备课教案上课时间周 编号课题课题4. 2直线、射线、线段(2)课型新授课时1主备教师:李永琴教学目标1、知识技能:会比较两条线段的长短;2、教学思考:理解线段中点的概念,了解“两点之间,线段最短”的性质。3、问题解决:会用尺规画一条线段等于已知线段;4、情感态度:养成勇于思考,乐于质疑良好品质教学重点线段的中点概念,“两点之间,线段最短”的性质是重点;教学难点画一条线段等于已知线段是难点。教学方法教学过程包括课题导入,教学进程,自学指导,教师点拨等一、温故知新1、过A、B、C三点作直线,小明说有三条,小颖说有一条,小林说不是一条就是 三条,你认为的说法是对的。二、自主学习问题:现有一根长木棒,如何从它上面截下一段,使截下的木棒等于另一根木棒的长?上面的实际问题可以转化为下面的数学问题:Ca已知线段a,画一条线段等于已知线段。1 .作一条线段等于已知线段现在我们来解决这个问题。作法:(1)作射线AM(2)在AM上截取AB二a。则线段AB为所求。-1ABM应用:已知线段a、b,求作线段AB=a+b。 ab解:(1)作射线AM;(2)在AM上顺次截取AC=a, CB= b。则AB= a+b为所求。.11ACBM做一做:作线段AB二a-b。2、比较两条线段的长短-12-两条线段可能相等,也可能不相等,那么怎样比较两条线段的长短呢?我们先来回答卜面的问题。怎样比较两个同学的身高?一是用尺子测量;二是站在一起比(脚在同一高度)。如果把两个同学看成两条线段,那么比较两条线段就有两种方法。(1)度量法:用刻度尺分别量出两条线段的长度从而进行比较。(2)把一条线段移到另一条线段上,使一端对齐,从而进行比较,我们称为叠合法。(如图) A (C)B (D) A (C)(D) BA (C)BCD)AB<CDAB>CDAB=CD3、线段的中点及等分点如图(1),点M把线段AB分成相等的两条线段AM与BM,点M叫做线段AB的中点;记作 AM=MB 或 AM=MB= 1/2AB 或 2AM=2MB=AB。II1I!1AMbA M N b(1) 如图(2),点M、N把线段AB分成相等的三段AM、MN、NB,点M、N叫做线段AB 的三等分点。类似地,还有四等分点,等等。.4、线段的性质请同学们思考课本128页的思考?结论:两点所连的线中,简单地说成:你能举出这条性质在生活中的一些应用吗?两点间的距离的定义:注意:距离是用“数”来度量的,它是线段的长度,而不是线段本身。【课堂练习】1、课本131页练习1、2、32、在直线上顺次取A、B、C三点,使人13二4 011,1303 011,点0是线段人(3的中点,则线段0B的长是1)A、 2 cmB、 1. 5 cmC、 0. 5 cmD、 3. 5 cm3、已知线段AB = 5cm, C是直线AB上一点,若BC=2 cm,则线段AC的长为【课堂小结】:1、画一条线段等于一条已知线段。2、怎样比较两条线段的长短?3、线段的性质是什么?4、什么是两点间的距离?【课堂测试】:1、把弯曲的河道改直后,缩短了河道的长度,这是因为;2、已知,如图,AB=16 cm, C是BC的中点,且AC=10 cm, D是AC的中点,E是 BC的中点,求线段DE的长。ADC E B-13-课题课题 4.3.1角课型课时1主备教师:李永琴教学目标1、知识技能:认识角的度量单位:度、分、秒,2、教学思考:在现实情景中,理解角的概念,掌握角的表示方法;3、问题解决:学会进行简单的换算和角度的计算。4、情感态度:养成勇于思考,乐于质疑良好品质教学重点角的表示和角度的计算是重点;教学难点角的适当表下是难点。教学方法教学过程包括课题导入,教学进程,自学指导,教师点拨等课后作业板书设计教后反思课题课题 4.3.1角课型课时1主备教师:李永琴教学目标1、知识技能:认识角的度量单位:度、分、秒,2、教学思考:在现实情景中,理解角的概念,掌握角的表示方法;3、问题解决:学会进行简单的换算和角度的计算。4、情感态度:养成勇于思考,乐于质疑良好品质教学重点角的表示和角度的计算是重点;教学难点角的适当表下是难点。教学方法教学过程包括课题导入,教学进程,自学指导,教师点拨等一、知识链接观察课本132页图4.3.1;思考问题:如图,时钟的时针与分针,棱锥相交的两条棱,直尺相交的两条边,给我们什么 平面图形的形象?二、自主学习1 .角的定义1: 有这个公共端点是角的的两条射线组成的图形叫做角。,这两条射线是角的 O2 .角的表示:用三个大写字母表示,表示顶点的字母写在中间:ZAOB; 用一个大写字母表示:Z0;用一个希腊字母表示:Za;用一个阿拉伯数学表示:Zlo思考:用适当的方法表示下图中的每个角:演示:把一条射线由0A的位置绕点0旋转到0B的位置,如图(1) 射线开始的位置0A与旋转后的位置0B组成了什么图形?-14-七年级数学集体备课教案上课时间周 编号角。如图(2),当射线旋转到起始位置0A与终止位置0B在一条直线上时,形成角;如图(3),继续旋转,0B与0A重合时,又形成 角;思考:平角是一条直线吗?周角是一条射线吗?为什么?4、角的度量阅读课本133页;填空:1周角二°,1平角=°, y =' ;如Na的度数是48度56分37秒,记作Na=48°56,37,,。度、分、秒是常用的角的度量单位,以度、分、秒为单位的角的度量制,叫做 角度制,注意:角的度、分、秒与时间的时、分、秒一样,都是60进制,计算时,借1当成60,满60进1。例 计算:(1) 53°28' +47°35' ;(2) 17°27' +3°50';(学生自己完成)【课堂练习课本134页1、2、3【课堂小结I1、什么是角、平角、周角?2、怎么表示角?3、角的度量单位是什么?它们是如何换算的?【课堂测试】:1、(37. 145) ° =度 分 秒;98°30 18' ' =度。2、下午2时30分,钟表中时针与分针的夹角为)A、90° B、105° C、120° D、135°3、如图,A、B、C在一直线上,已知/ 1 =53° , /2 = 37。; CD与CE垂直吗?-15-课后作业七年级数学集体备课教案上课时间板书设计教后反思周 编号课题课型教学目标新授课时课题 4.3.2角的比较与运算主备教师:李永琴1、知识技能:会比较两个角的大小,2、教学思考:理解角平分线的概念,会画角平分线。3、问题解决:能分析图中角的和差关系;4、情感态度:养成勇于思考,乐于质疑良好品质教学重点教学难点教学方法教学过程角的大小比较和角平分线的概念 从图形中观察角的和差关系包括课题导入,教学进程,自学指导,教师点拨等一、知识链接回顾线段大小的比较,怎样比较图中线段AB、BC、CA的长短?(1) 度量法;(2)叠合法。AB<AC<BC那么怎样比较NA、 N B、 N C的大小呢?二、自主学习1、比较角的大小(1)度量法:用量角器量出角的度数,然后比较它们的大小。(2)叠合法:把两个角叠合在一起比较大小。教师演示:(1)2、认识角的和差思考:如图,图中共有几个角?它们之间有什么关系?C/-16 -图中共有3个角:NAOB、NAOC、ZBOCo它们的关系是:ZA0C=ZA0B+ZB0C;ZB0C=ZA0C-ZA0B;ZA0B=ZA0C-ZB0C3、用三角板拼角探究:借助三角尺画出15°, 75°的角。一副三角板的各个角分别是多少度?学生尝试画角。你还能画出哪些角?有什么规律吗?还能画出规律是:凡是 4、角平分线规律是:凡是 4、角平分线的倍数的角都能画出。角的平分线:从一个角的 出发,把这个角分成的两个角的射线,在一张纸上画出一个角并剪下,将这个角对折,使其两边重合.想想看,折痕 与角两边所成的两个角的大小有什么关系?如图(1)叫做这个角的平分线。类似地,还有角的三等分线等。如图(2)中的OB、OCo0B是NA0C的一平分线,可以记作:ZA0C=2ZA0B=2ZB0C 或NAOB=NBOO,25、例题学习例1如图,0是直线AB上一点,ZA0C=53°17,求N BOC的度数。例2把一个周角7等分,每一份是多少度的角(精确到分)【课堂练习工课本136页1、2、3o【课堂小结】:1、角的大小比较的方法和角的和差关系;2、用一副三角板画角;3、角的平分线及表示。【课堂测试】:1、如图,0为直线AB上一点,射线OD、0E分别平分NAOC、ZB0C,求ND0E 的度数。-17-七年级数学集体备课教案上课时间周 编号课后作业板书设计教后反思(1)(2)(3)12C90°O课题课型-tel课时1主备教师:李永琴教学目标1、知识技能:认识一个角的余角和补角;2、教学思考:在具体的现实情境中,认识一个角的余角和补角;3、问题解决:正确求一个角的余角和补角;4、情感态度:养成勇于思考,乐于质疑良好品质教学重点正确求出一个角的余角和补角。教学难点正确求出一个角的余角和补角。教学方法教学过程包括课题导入,教学进程,自学指导,教师点拨等课题:余角和补角(1)一、知识链接 思考:在一副三角板中同一块三角板的两个锐角和等于多少度? 如图 1,已知Nl=61。, Z2=29° ,那么N1 + N2=。如 图2,已知点A、O、B在一直线上,NC0D=90。,那么N1+N2=图1自主探究1.互为余角的定义:思考:(1) 如图 3,已知N1 =62° ,/2=118。,那么 Zl+Z2 =2(2) 如图4, A、0、B在同一直线上,N1 + N2二X18-A 0 B2 .互为补角的定义:问题1:以上定义中的“互为”是什么意思?问题2:若 Z1+Z2 +N3 =180° ,那么Nl、N2、N3互为补角吗?3 .新知应用:例1:若一个角的补角等于它的余角4倍,求这个角的度数。例 2:如图,ZA0C=ZC0B = 90° , ZD0E=90° , A、(1)写出NCOE的余角,NAOE的补角;(2)找出图中一对相等的角,并说明理由;例3,自主探究137页,例3【课堂练习】:【课堂练习】:课本139页练习1、2、3、4【课堂小结】:【课堂测试】:1、一个角的余角比它的补角的!还少20。,求这个角的度数。32、若Na和/尸互余,且邛=7: 2,求/1、/月的度数。课后作业-19-七年级数学集体备课教案七年级数学集体备课教案上课时间编号课题课型教学目标新授课时4.L1认识几何图形(1)主备教师:李永琴1、2、3、4、知识技能:能由实物形状想象出几何图形,由几何图形想象出实物形状;教学思考:通过观察生活中的大量图片或实物,经历把实物抽象成几何图形的过程;问题解决:能识别一些简单几何体,正确区分平面图形与立体图形。情感态度:积极参与教学,主动参与学习。教学重点教学难点教学方法教学过程识别简单的几何体是重点从具体事物中抽象出几何图形包括课题导入,教学进程,自学指导,教师点拨等一、知识链接同学们,你仔细观察过我们生活的世界吗?从城市宏伟的建筑到乡村简朴的住宅, 从四通八达的立交桥到街头巷尾的交通标志,从古老的剪纸艺术到现代化的城市雕 塑,从自然界形态各异的动物到北京的申奥标志,包含着形态各异的图形。图形 的世界是丰富多彩的!那就让我们走进图象的世界去看看吧。二、自主探究1.几何图形(1)仔细观察图4. 1-1,让同学们感受是丰富多彩的图形世界;(2)出示一个长方体的纸盒,让同学们观察图4.1-2回答问题:从整体上看,它的形状是什么?从不同侧面看,你看到了什么图形?只看棱、顶点等 局部,你又看到了什么?(1)纸盒(2)长方形(3)正方形(1)长方体(4)线段点我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学习过的三角形、 四边形等,都是从形形色色的物体外形中得出的。我们把这些图形称为几何图形。注意:当我们关注物体的形状、大小和位置时,得出了几何图形,它是数学研究 的主要对象之一,而物体的颜色、重量、材料等则是其它学科所关注的。4 .立体图形思考第117页思考题并出示实物(如茶叶、地球仪、字典及魔方等)及多媒体 演示(如谷堆、帐篷、金字塔等),它们与我们学过的哪些图形相类似?长方体、正方体、球、圆柱、圆锥等它们各部分不都在同一平面内,它们是立体图形。 想一想-2-板书设计教后反思七年级数学集体备课教案上课时间周 编号-20-课题课题:余角和补角(2)课型新授课时1主备教师:李永琴教学目标1、知识技能:余角和补角的性质八2、教学思考:了解方位角,能确定具体物体的方位。3、问题解决:掌握余角和补角的性质4、情感态度:养成勇于思考,乐于质疑良好品质教学重点掌握余角和补角的性质;方位角的应用;教学难点掌握余角和补角的性质;方位角的应用;教学方法教学过程包括课题导入,教学进程,自学指导,教师点拨等一、知识链接1.70°的余角是,补角是;2. Za (Na <90° )的它的余角是,它的补角是;二、自主学习L探究补角的性质:例3、如图,N1与N2互补,N3与N4互补,N3,那么N2与N4相等吗? 为什么?分析:(1) N1与N2互补,N2等于什么? Z2=180°- ,N3与N4互补,N4等于什么? Z4=180° - 。(2)当N1=N3时,N2与N4有什么关系?为什么?Z2=Z4 (等量减等量,差相等)上面的结论,用文字怎么叙述?补角的性质:等角的相等。2.探究余角的性质:如图N1与N2互余,N3与N4互余,如果N1 = N3,那么N2与N4相等吗?为什么?余角性质:等角的相等4匕O南)南偏西21°的某处有一点B,则NA0B3.方位角:(1)认识方位:正东、正南、正西、正北、东南、西南、西北、东北。(2)找方位角:乙地对甲地的方位角;甲地对乙地的方位角一样吗?例4:如图.货轮0在航行过程中,发现灯塔A在它南偏东60。的方向上,同时,在它北偏东40。,南偏西10。,西北(即北偏西45° )方向上又分别发现了客轮B,货轮C和海岛D.仿照表示灯塔方位的方法画出表示客轮B,货轮C和海岛D方向的射线。(师生共同完成)【课堂练习】:1.如图,NA0B=90。,NC0D=NE0D=90。,C,0,E 在一条直线上,且N2=N4,请说出N1与N3之间的关系?并试着说明理由?【课堂小结补角的性质:余角的性质:【课堂测试】:1、Na和/分都是NZO夕的补角,则Na2、如果/1 + /2 = 90。,/1 + /3 = 90,则 N2与/3 的关系是理由是3、A看B的方向是北偏东21。,那么B看A的方向(A南偏东69° B南偏西69° C南偏东21°4、在点0北偏西60°的某处有一点A,在点0南偏西20°-21 -的度数是() A 100° B 70° C 180° D 140°课后作业板书设计教后反思七年级数学集体备课教案上课时间周 编号教学目标1、知识技能:掌握平面图形(线段、射线、直线)的基本知识;2、教学思考:直观认识立体图形,掌握平面图形(线段、射线、直线)的基本知识;3、问题解决:掌握角的基本概念,能利用角的知识解决一些实际问题。4、情感态度:养成勇于思考,乐于质疑良好品质教学重点线段、射线、直线、角的性质和运用教学难点角的运算与应用;空间观念建立和发展;几何语言的认识与运用。余角和补角的性质八教学方法教学过程包括课题导入,教学进程,自学指导,教师点拨等课题第四章图形认识初步复习主备教师:李永琴复习课时1一、知识结构从不同方向看立体图形课题立体图形几何Y图形I平面图形展开立体图形,平面图形直线、射线、线段'角的度量角的比较与运算线段大小的比较 两点确定一条直线 两点之间,线段最短角的平分线二、回顾与思考1、2、3、余角和补角等角的补角相等1等角的余角相等下面是我们学习过的一些数学名词,立体图形平面图形两点间的距离 余角你能用自己的语言简短地描述它们吗?展开图补角与以前相比,你对直线、射线、线段和角有什么新的认识? 直线的性质:经过两点有一条直线,并且只有一条直线。即:4、线段的性质和两点间的距离确定一条直线。-22-(1)线段的性质:两点之间,O(2)两点间的距离:连接两点的,叫做两点间的距离。5、线段的中点及等分点的意义(1)若点C把线段AB分为 的两条线段AC和BC,则点C叫做线段的中点。 角的概念1、角的定义和表示(1)有 的两条射线组成图形叫做角。这是从静止的角度来定义的。由一条射线绕着 旋转而成的图形叫做角。这是从运动的角度来定义的。(2)角的表示:用三个大写字母表示;用一个大写字母表示;用阿拉伯数字或希腊字母 表不。2、角的度量1°=60,; y=60,.3、角的比较比较角的方法:度量法和叠合法。4、角的平分线从一个角的顶点出发,把这个角分成 的两个角的射线,叫做这个角的平分线。表不为ZAOC= ZCOB或 N A0C=ZC0B= 1/2ZA0B 或 2N A0C=2NC0B= ZA0B5、余角和补角(1)定义:如果两个角的和等于,就说这两个角互为余角。如果两个角的和等于,就说这两个角互为补角。注意:余角和补角是两个角之间的关系;只与数量有有关,而与位置无关。(2)余角和补角的性质:同角(等角)的余角相等。同角(等角)的补角相等。6、方位角三、例题导引1如右图是由几个小立方体所搭几何体的俯视图,小正方形中的数字表示在该 位置小正方体的个数,画出从不同方向看到的平面图形。2. (1)如图,点C在线段AB上,AC BC的中点,求线段MN的长;8 cm, CB = 6 cm,点 M、N 分别是 AC、-23-(2)若C为线段AB上任一点,满足AC + CB=a cm,其它条件不变,你能猜 想MN的长度吗?并说明理由。(3)若C在线段AB的延长线上,且满足AC BC=b cm, M、N分别为AC、BC 的中点,你能猜想MN的长度吗?请画出图形,并说明理由。3 如图,NAOB是直角,Z A0C=50° ,0N是N AOC的平分线,0M是/ BOC的平3 如图,NAOB是直角,Z A0C=50° ,0N是N AOC的平分线,0M是/ BOC的平分线。(1)求N MON的大小;(2)当/ AOC= a时,Z MON等于多少度?(3)当锐角N AOC的大小发生改变时,Z MON的大 小也会发生改变吗?为什么?【拓展训练】1.如图,。是直线仍上一点,%为任一条射线,0D平分4BOC,龙平分/力和.(1)指出图中/的补角,NB0E的补角;(2)若N伙心68。,求/屐2和N加。的度数;(3) NC勿与/夕%具有怎样的数量关系?AO B2、观察下列图形,并阅读图形下面的相关文字:两条直线相交,三条直线相交,四条直线相交,最多有1个交点最多有3个交点最多有6个交点猜想:(1) 5条直线最多有几个交点? 6条直线呢?(2) n条直线相交最多有几个 交点【课堂小结】:【课堂测试】: 一、选择题: 1、下列说法正确的是()A.射线AB与射线BA表示同一条射线。B.连结两点的线段叫做两点之间的距离。-24-C.平角是一条直线。C.平角是一条直线。D.若N1+N2=90°, N1+N3=90°,则 N2=/3;2、5点整时,时钟上时针与分钟 之间的夹角是)A.210°A.210°B. 30°C. 150° D. 60°3、如图,射线0A表示A、南偏东70°B、北偏东30°C、南偏东30°D、北偏东70°4、下列图形不是正方体展开图的是c20° 15' 30" , ZC = 20. 25°5、若NA = 20° 18' , ZB 二A. ZA>ZB>ZCA. ZA>ZB>ZCB. ZB>ZA>ZCC. ZA>ZC>ZBC. ZA>ZC>ZBD. ZC>ZA>Z二、填空题:6、38° 4y的余角等于,123° 59,的补角等于7、根据下列多面体的平面展开图,填写多面体的名称。,(2)8、互为余角的两个角之差为35。,则较大角的补角是9、45°527 48 =度,126.31°10、25°如图,18' -4-3 =己知=4, DB=7, 是力。的中点,则求AC的长度。11、如图直线1表示一条笔直的公路,在公路两旁有两上村庄A和B,要在公 路边修建一个车站C,使车站C到村庄A和B的距离之和最小,请找出村庄 C点的位置,并说明理由。-25-A .e B图6课后作业板书设计教后反思七年级数学集体备课教案上课时间周 编号-26-课题第四章 图形认识初步 检测试卷(满分100分)课型检测课时1主备教师:李永琴检测目标1、知识技能:2、教学思考:3、问题解决: 4、情感态度:检测重点图形认识初步检测难点图形认识初步检测方法闭卷测试检测过程检测试题问题解析一、填空题(每空4分,共40分)1.圆柱的侧面展开图是;2,已知Na与/夕互余,且Na = 40 15',则为;3 .如果一个角的补角是150。,那么这个角的余角是;4 .乘火车从A站出发,沿途经过3个车站可到达B站,那么在A 8两站之间最多共有种不同的票价;5 .如图,若订是中点,下是BC中点,若工C = 8, EC = 3, AD =。A D BEC6 .要在墙上固定一根木条,至少要个钉子,根据的原理是o7. 225 =度 分; 8.12。24' =0;9 .小明每天下午5:30回家,这时分针与时针所成的角的度数为一度。二、选择题(每题4分,共20分)10 .下列判断正确的是()A.平角是一条直线B.凡是直角都相等C.两个锐角的和一定是锐角D.角的大小与两条边的长短有关11 .下列哪个角不能由一副三角板作出()A. 105°B. 15°C. 175°D. 135°12 .若Na = 90。一机。,/4=90。+加。,则与的关系是()A.互补B.互余C.和为钝角D.和为周角13 .平面上A、B两点间的距离是指()A. 经过A、B两点的直线 B.射线AB C. A、B两点间的线段D. A、B两点间线段的长度14 . 一个立体图形的三视图如图所示,那么它是(A.圆锥 B.圆柱C.三棱锥 D.四棱锥三、解答题:(共40分)15 .根据下列要求画图:(10分)(1)连接线段AB;(2)画射线0A,射线0B;(3)在线段AB上取一点C,在射线0A上取一点D (点C、D不与点A重合),画直 线CD,使直线CD与射线0B交于点E。16、如图所示的几何体是由5个相同的正方体搭成的, 视图(9分)请画出它的主视图、左视图和俯17.如图所示,点0是直线AB上一点,0E, 0F分别平分NA0C 和NB0C,若NA0C=68° ,则 NB0F 和/EOF 是多少-27-度?(9分)18. (1)如下图,已知点C在线段AB上,且AC=6cm, BC=4cm,点M、N分别是AC、BC的 中点,求线段MN的的长度.AMCnB(2)在(1)中,如果AOacm, BC = bcm,其它条件不变,你能猜出MN的长度吗? 请你用一句简洁的话表述你发现的规律.(3)对于(1)题,如果我们这样叙述它:“已知线段AC=6cm, BC=4cm,点C在直线 AB上,点M、N分别是AC、BC的中点,求MN的长度。”结果会有变化吗?如果有,求 出结果。(12分)课后作业板书设计教后反思七年级数学集体备课教案上课时间周 编号-28-课题设计制作长方体形状的纸盒.课型活动课时1主备教师:李永琴教学目标1、知识技能:利用立体图形的平面展开图制作包装纸盒.通过问题的解决进一步理解立 体图形和相应平面图形之间的转化关系2、教学思考:在解决问题的过程中,提高对合作意识的认识,3、问题解决:通过包装纸盒的制作,掌握制作长方体纸盒的一般方法,能够独立制作出 相关的包装盒.4、情感态度:培养合作精神教学重点如何把立体图形转化为平面图形,制作包装纸盒.教学难点如何把立体图形转化为平面图形.教学方法探究、归纳与练习相结合教学过程包括课题导入,教学进程,.自学指导,教师点拨等.一、活动的主要内容活动名称:设计制作长方体形状的纸盒.方法:观察、讨论、动手制作.材料:厚(硬)纸板、直尺、裁纸刀、剪刀、胶水、彩笔等.准备:收集一些长方体形状的包装盒,如墨水瓶盒、粉笔盒、饼干盒、 牛奶包装盒、牙膏盒等.文具盒牙膏盆二、活动步骤、分组活动活动步骤:1 .观察、讨论各组确定所要设计制作的包装盒的类别,明确分工.(1)观察作为参考物的包装盒,分析其各面、各棱的大小与位置关系.(2)拆开盒子,把它铺平,得到表面展开图;观察它的形状,找出对 应长方体各面的相应部分;度量各部分的尺寸,找出其中的相等关系. (3)把表面展开图复原为包装盒,观察它是如何折叠并粘到一起的. (4)多拆、装几个包装盒,注意它们的共同特征.(5)经过讨论,确定本组的设计方案.2 .设计制作(1)先在一张软纸上画出包装盒表面展开图的草图,简单设计一下, 裁纸、折叠,观察效果.如果发生问题,调整原来的设计,知道达到 满意的初步设计.(2)在硬纸板上,按照初步设计,画好包装盒的表面展开图,注意要 预留出粘合处,并要减去适当的棱角.在表面展开图上进行图案与文 字的美术设计.(3)裁下表面展开图、折叠并粘好粘合处,得到长方体包装盒703.交流、比较-29-生活中还有哪些物体的形状类似于这些立体图形呢?思考:课本118页图4. 1-4中实物的形状对应哪些立体图形?把相应的实物与图形用 线连起来。3.平面图形平面图形的概念线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图 形。思考:课本118页图4. 1-5的图中包含哪些简单的平面图形?请再举出一些平面图形的例子。长方形、圆、正方形、三角形、。思考:立体图形与平面图形是两类不同的几何图形,它们的区别在哪里?它们有 什么联系?立体图形的各部分不