比例的基本性质教学设计(热门12篇).docx
比例的基本性质教学设计(热门12篇)为你整理了 12篇范文,盼望对你有参考作用。篇一:比例的基本性质教学设计教学目标1通过自主探究,同学能理解比例的基本性质,熟悉比例的各部 分名称。2、同学能运用比例的基本性质正确推断两个比能否组成比例。3、激发同学学习爱好。教学重点:1、熟悉比例的各部分名称。2、理解比例的基本性质。教学难点:会依据比例的基本性质正确推断两个比能否组成比例。学问链接:比例的意义教学过程:一、创设情境,明确目标1、什么叫比例?2、下面的比能组成比例吗?你是怎样推断的?2.4: 1.6 和 60:40二、导学探究,建立模型(一)导学探究,解决问题观性,实现课堂教学的,增加课堂教学的厚度。为此,在预备这节课 时,我对情境的创设有如下考虑:简洁却能为同学供应思索的空间。教材中直接呈现比例,并跟进两个填空:两个外项的积是(),两 个内项的积是(),从而得出结论:在比例中,两个外项的积等于两 个内项的积,这叫做比例的基本性质。个人认为这样的情境太直接, 牵住同学的.思维走,没有供应可探究的空间。为此,我简洁创设了 这样一个情境:老师这里有一个比例,不过它的两个内项看不清了, 想一想,这两个内项可能是哪两个数?这个问题简洁却开放,答案不 唯一,为同学的思索打开了空间,同时同学可以通过求比值的方法解 决:先填进一个数,然后就出比值,再确定另一个数。只要老师有意 识的把同学的回答有序板书,可以达到引导有序思索的作用。2、教学方式的选择训练的真谛应当是促进人的进展,人的进展当然需要积累肯定量的 基础学问,更重要的是思维水平的提升和分析问题、解决问题力量的 进展。我们的课堂教学要引领同学把握学问,更要侧重引领同学经受 学问的形成过程,让同学在探究学问形成过程的学习中,不断拓展思 维的宽度和增加思维的厚度。比例的基本性质本身并没有难度,难在通过观看、猜想、验证、归 纳等数学活动探究这个结论的形成过程。我想,这个探究过程应当就 是一个合作、探究学习的过程吧。只有当同学经受了这个探究式学习 过程,才有可能真正体验思索与合作的成就感,才能真正激发同学对 数学的学习爱好。3、练习的设计(1)推断下面哪组中的两个比可以组成比例。旨在巩固对比例基本性质的把握,应用比例的基本性质解决问题,渗透假设、验证的解 决问题方法,假设两个比能组成比例,然后依据比例的基本性质,分 别算出两个外项和两个内项的积。补问引出求比值的方法推断两个比 能否组成比例,追问引领同学对求比值推断两个比能否组成比例和用 比例的基本性质推断两个比能否组成比例的方法进行比较优化,凸显 了比例基本性质的应用价值。(2)依据乘法等式写比例。既是对比例基本性质的逆用,又旨在 渗透有序思索的解决问题策略和方法。(3)假如ax2 = bx4,则a:b= ():(),旨在将比例的基本性质逆 用推广到一般。追问:假如a:b=4:2,则a=4, b = 2。这种说法对吗? 为什么?旨在激发同学的思维冲突,引领同学打破思维定势,体验变 与不变的思想。那么a、b还可能是多少?你发觉了什么?旨在引导 同学经受一个列举、归纳的过程,提升思维水平。(4)猜猜我是谁? 6: () =5:4,旨在应用比例的基本性质时,渗透 方程思想,为解比例的同学作铺垫。【教学预设】一、熟悉比例各部分的名称1、呈现:4:5 和 8:10(1)熟悉吗?叫什么?(2)正确吗?为什么? (4:5=0.8, 8:10=0.8,所以 4:5=8:10)(3)求比值,推断两个比能否组成比例。2、介绍比例各部分的名称4:5=8:10中,组成比例的四个数叫做这个比例的项。两端的两项叫 做比例的外项。中间的两项叫做比例的内项。3、你能说出下面比例的内项和外项各是多少吗?1 1) 1.4:=:5 (2)=二、探究比例的基本性质1、猜数呈现比例。(1)想一想,这两个内项可能是哪两个数?如1和24, 2和12,(2)这样的例子举得完吗?2、猜想认真观看这组等式,你有什么发觉?(两个外项的积等于两个内项 的积;两个内项的位置可以交换)3、验证(1)是不是全部的比例都有这样的规律呢,有什么好方法?(2)你觉得应当怎样举例呢?(3)合作要求1)前后4个同学为一个小组;2)每个同学写出一个比例,小组内交换验证。3)通过举例验证,你们能得出什么结论?4、小结(1)老师这里也有一个比例3:5二4:6,为什么两个外项的积不等于两个内项的积?篇五:比例的基本性质教学设计一、教学目标1、使同学在理解比例的基本性质的基础上熟悉比例的以及和o2、理解并把握比例的基本性质,会应用比例的基本性质推断两个 比能否组成比例。教学重点比例基本性质.教学难点应用比例的意义或基本性质推断两个比能否组成比例,并 能正确地组成比例.二、教学过程(-)复习铺垫2 .上节课我们已经熟悉了比例?谁能说说什么是比例?2、哪组中的两个比可以组成比例?把组成的比例写出来.(1)3:5 18:30(2)0.4:0.2 1.8:0.9(3)2:89:27提问:下面每组中两个比能组成比例吗?为什么?(二)探究新知1、把左边的三角形按比例缩小后得到右边的三角形。(单位:厘米)(1)提问:你能依据图中的数据写出比例吗?(2)两个三角形底的比和高的比相等吗? 3:62:4两个三角形高的比和底的比相等吗? 2:43:6每个三角形底和高的比相等吗? 3:26:4每个三角形高和底的比相等吗? 2:34:62、(1)同学自学:组成比例的四个数,就是比例的各个部分,那 么比例的各部分的名称是什么呢?请同学门自学课本第43页。(2)同学汇报:组成比例的四个数叫做比例的项.两端的两项叫 做比例的外项,中间的两项叫做比例的内项.(板书)3: 6=2: 4外项内项内项外项(2)同学沟通:你能说出其他三个比例的内项和外项是多少吗?(3)写成分数形式的比例,并说一说各比例外项和内项在哪里?(4)比较:比例和比有什么区分?3、(1)要求:观看黑板上的四个比例式,你有什么发觉?(同学小 组争论、沟通)(2)要求:计算上面每一个比例中的外项积和内项积,并争论它 们存在什么关系?以3团6 = 2团4为例,指名来说明.内项积是:6x2 = 12外项积是:3x4 = 126x2 = 3x44、再写出一些比例,看看是否有同样的规律.同学自己任选两三个比例,计算出它的外项积和内项积.5、假如用字母表示比例的四个项,即a:b=c:d,那么这个规律可以表示为()6、老师明确:在比例里,两个外项的根等于两个内项的积,这叫 做比例的基本性质。板书课题:比例的基本性质7、思索:假如把比例写成分数形式,等号两端的分子和分母分别 交叉相乘的积有什么关系?为什么?老师板书:交叉相乘积相等8、提问:学习了比例的基本性质有什么用呢?三、巩固练习。1、完成试一试2、比和比例除了在意义和各部分名称方面不同,你认为它们在什么方面还有什么区分?3、完成练习十/I、2、3、44、推断:比例的两个外项的积是1,两个内项肯定互为为倒数.()5、依据4x9 = 12x3,写出比例式。四、全课小结:这节课你学习了哪些学问?五、作业:篇六:比例的基本性质教学设计教材分析:比例的基本性质这节课在同学理解比例的意义的基础上教学的, 为下节课教学解比例打下基础。教材利用三角形的缩小做素材,引导 同学依据图中的数据写出不同的比例,以其中一个比例为例教学比例 各项的名称,在让同学说出其他几个比例的内项和外项。在观看各个 比例中的内项和外项的基础上,进展规律,揭示比例的基本性质。教 材还介绍了分数形式的比例基本性质的表达方法。教学利用比例的基 本性质推断两个比能否组成比例的方法。和练习十第1-4题对所学学 问进行巩固。设计思路:传统的课堂教学,同学面对的都是些经过人类长期积淀和锤炼的问 接阅历。由于教学大纲规定,许很多多的学问点,使得老师只能用简 洁的的教学方式来进行。而同学只是记忆、再现这些学问点,沦为考 试的奴隶。其实学问是死的,课堂教学绝不仅仅让同学拥有学问,更 应当让同学拥有才智,拥有猎取学问的方法。从训练心理学角度看,同学才智的进展,离不开才智的熏陶。智: 是人类个体的熟悉过程或认知结构,即对外部信息的感知、整理、联 想、储存很搜寻、提取、操作,或通过此过程形成的认知水平。慧: 是人类个体所认知事理的评判过程和评判标准。我校通过创设才智课 堂,使教学触及同学的世界,伴随他们的认知活动,做到了。基于以上熟悉,我教学时留意了以下几点:1、注意从同学已有的学问动身,主动建构学问。在教学时,让同 学自己选择例子来探究,在探究中发觉规律,得到结论。让同学处于 乐观探究的状态,唤醒了同学学习中一些零散的体验,并在老师的引 导下主动将这些体验,提炼出数学学问。在教学中,不仅要求同学把握抽象的数学结论,更应注意同学的意 识,引导同学参加探讨学问的形成过程,尽量挖掘同学的潜能,能让 同学通过努力,自己解决问题。这一教学过程,让同学通过计算、观 看、发觉、自学的方式,使同学在自己探究中学习学问,发觉学问, 并通过争论,说出推断两个比能否组成比例的依据,促进了同学学习 的顺当进行。2、用教材教,体现教学的民主性。由于同学对比的学问了解甚多, 所以在讨论的时候,不是老师出示教材中的例子,而是让同学自己举 例讨论,使讨论材料的随机性大大增加,从而提高结论的可信度。这 样也能让同学体会到归纳法讨论的过程,并渗透科学态度的训练。整个教学过程力求体现同学自主探究、独立思索、合作沟通的学习 过程,从中提高同学的数学学习的力量。如要求同学用自己的语言归 纳比例的基本性质,重视在练习中发挥老师的指导作用,使练习的针 对性更强,巩固练习在层次上由易到难,在形式上由封闭走向开放, 让同学的聪慧才智、才能得到充分的发挥,真正主动学习,成为学习 的仆人。3、在运用比例的基本性质进行推断时,要求同学讲明理由,培育 同学有依据思索问题的良好习惯;在填写比例中未知数时,不仅要求 同学说出理由,还要求同学进行检验,这样培育同学良好的检验习惯 和敏捷解决问题的力量,培育良好的学习习惯。4、赐予同学自主探究的时间、自由驰骋的思索空间,允许他们有 不同的想法、不同的方法,在开放式、共性化的学习中生成灵感,碰 撞才智。正是同学用自己独特的学习方式来解决问题,课才变得生动 和真实,学习才显得如此活泼和有效。数学的学习成了布满灵性的制 造过程,成了放飞心灵的欢乐之旅。课堂已不仅是学科学问传递的殿 堂,更是才智培育的圣殿。叶澜教授曾说:,的确我们老师应当把课堂看作是同学演绎精彩生 命的舞台,把主动权、选择权下放给同学,让同学去思索、去探究、 去实践,才能激起同学的求知欲望,才会有层出不穷的生成,使课堂 布满生命的活力。教学反思这节课是概念教学,不太好讲。在上课之前我感觉自己做了充分的 预备。从同学已有的学问阅历入手,便利快捷,为新课做好预备。激 发同学的学习爱好和求知欲望,使同学在探究中学习。然后在教学比 例的基本性质时,我让同学看书自学,再小组沟通,这样符合的要求, 体现了老师的主导作用和同学的主体地位。本节课的学习方式是多样 的,有观看比较、小组沟通、师生沟通、同位沟通、多方验证。另外, 为了培育同学的力量,我采纳了自主观看与争论相结合的教学方式, 而且整节课的设计,总体感觉还是比较适合同学的思维进展的,在结 构上,我也注意了前后呼应,使整堂课也显得比较紧凑。但是上完课之后,我发觉还存在许多问题。1、老师激励性的语言还欠缺,还不能用多种语言来激励同学。假 如感情更深些,更能激起同学的学习爱好,使他们能更好的参参加学习。2、上课心态、心情还不够平稳,计算机技能、教学机灵、自身素 养还有待提高。为促进教学目标的顺当完成最终有点赶时间。3、面对一些即时生成的课程资源,我还不能准时抓彩,把这些有 效的教学资源开发、放大,让它临场闪光,从而激发同学参加课堂的 热忱,让的学问活起来,让的课堂动起来,变单纯的与为乐观主动的 与。我觉得通过这一节课我学到了好多,作为一名老师,不能完全根据 自己的意愿去设计课程,要考虑到同学。作为一名老师,在今后的日 子里,还要好好努力,在实践中不断完善自己的教学方法。篇七:比例的基本性质教学设计一、教学目标学问与技能目标:在详细情境中,理解比例的意义和基本性质,会 应用比例的意义和基本性质正确推断两个比能否组成比例。过程与方法目标:在探究比例的意义和基本性质的过程中进展推理 力量。态度价值观目标:通过自主学习,经受探究的过程,体验胜利的欢 乐。二、教学重点难点重点:理解比例的意义和基本性质。难点:推断两个比是否成比例。三、教学过程设计1、导学提示,明确方向请自学教材41页例1之前的内容,然后小组合作,完成下面的问 题。1)比例各部分的名称是什么?2)找出比例2.4:1.6=60:40的外项和内项,计算比例中两个外项和 两个内项的积,你有什么发觉?3)请自己任意举例,验证你的发觉。4)试着总结比例的基本性质。2、自主学习,解决问题(二)展现沟通,建立模型1、同学汇报,重点释疑1)组成比例的四个数,叫做比例的项,两端的两项叫做比例的外 项,中间的两项叫做比例的内项。2) 2.4回 1.6=60回40两外项积是:2.4x40=96两内项积是:1.6x60=962.4x40 = 1.6x60同学自主学习,解决问题。各小组代表汇报全班沟通3)同学举例子,验证发觉的规律。2、归纳小结,建立模型(一)创设情境,提出问题1.复习导入:(1)什么叫做比?两个数相除又叫做两个数的比。(2)什么叫做比值?比的前项除以比的后项所得商,叫做比值。(3)求下面各比的比值:12:16= 4、5:2、7= 10:6=谈话:今日我们要学的学问也和比有着亲密的关系。2、创设情境,提出问题。谈话:同学们,你们知道青岛都有哪些产品特别出名?(同学依据 自己的了解回答)青岛啤酒享誉世界各地,这节课,我们将一起去探 究啤酒生产中的数学出示课件:这是一辆货车正在运输啤酒的主要生产原料大麦芽。这是它两天的运输状况:一辆货车运输大麦芽状况第一天其次天运输次数24运输量(吨)16 32依据这个表格,让同学提出有关比的数学问题。同桌俩人,一个提 问题,一个将问题的答案写在本上,看哪对同桌合作得最好,提出的 问题最多。谈话:谁来沟通?跟大家说一下你的问题是什么? 同学可能消失以下的问题:货车第一天的运输量与运输次数的比是多少? (16:2)货车其次天的运输量与运输次数的比是多少? (32 : 4)货车其次天的运输量与第一天运输量的比是多少? (32 : 16)(师依据同学的回答,将答案一一贴或写于黑板)3 : 16; 4 : 32; 16 : 2; 32 : 4;16 : 32; 2 : 4; 32 : 16; 4 : 2。1、熟悉比例及各部分名称。谈话:学习数学,我们不仅要擅长提问,还要擅长观看。现在就请 你观看这两个比(16 : 2; 32 : 4)看能发觉什么?(同学会发觉比 值相等)思索:这个比值所表示的实际意义是什么?(每次的运输量)既然它们的比值相等,那我们可以用什么符号将两个比连接起来?同学用等号连接,并请同学把这个式子读一下。试一试:剩下的这些比中,哪两个也能用等于号连接?在你的练习 本上写写看。(同学独立完成)介绍:像这样表示两个比相等的式子,数学上就把它叫做比例。我 们知道,比有前项、后项,比例的各部分也有自己的名字。组成比例 的四个数叫做比例的项,像16、4位于两端的两项叫做比例的外项, 2、32位于中间的两项叫做比例的内项。比例,也可以写成分数形式。同学先把2 : 16=4 : 32这个比例写成分数形式,再同桌俩沟通它的内项外项分别是谁。自学提示:同学们表现得都特殊棒,现在请你看课本自主练习第1 题,能否依据刚才所学学问解决。(同学独立完成)2、比和比例有什么区分?比4团U6比例2 团 113 = 4 团 U64 .推断下面两个比能否组成比例?609 和 9012总结方法:推断两个比能不能组成比例,要看它们的比值是否相等。5 .谈话引入:刚才,你们是依据比例的意义先求出比值再推断两个 比能否组成比例。我不是这样想的,可能很快就推断好了,想知道其 中的隐秘吗?其实隐秘就藏在比例的两个内项和两个外项之中,它们 两者之间可是存在着一种奇异的关系,你想揭穿这个隐秘吗?那就请你以16: 2=32: 4为例,通过看一看,想一想,算一算等方 法,试试能不能发觉这个关系!5、同学先独立思索,再小组沟通,探究规律。出示讨论方案:观看比例的两个内项与两个外项,用算一算的方法,找同学说 一说,你发觉了什么。是不是每一个比例的两个外项与两个内项都具有这种规律,请 你再举出这样的例子来。通过以上讨论,你发觉了什么?6、全班沟通。(1)哪个小组情愿将你们的发觉与大家共享?(2)还有其他发觉吗?(3)你们组所发觉的是不是个偶然现象呢?咱们最好是怎么办?7、验证发觉,共享胜利。师:对,举例验证,这可是一种特别好的数学方法。那现在,咱们 可以利用黑板上的比例,也可以自己组一个新的比例,验证看看,是 不是全部的比例都是两个外项的积等于两个内项的积。(同学独立验 证)8、利用一个比例通过课件形象的展现两个外项的积等于两个内项 的积。9、小结:不错,看来同学们很会观看,很会思索,很会验证,自 己发觉了比例的一条规律。也就是,在比例里,两个外项的积等于两 个内项的积。数学上我们把这条规律,叫做比例的基本性质。这也是 我们在学校阶段,在继分数、比的基本性质之后学习的第三个基本性 质。运用它,我们可以解决很多数学问题。10、比例的基本性质的应用:应用比例的基本性质,推断下面两个比能不能组成比例.603和8团5方法:a、先假设这两个比能组成比例b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。C、依据比例的基本性质推断组成的比例是否正确。(二)自主练习,拓展提升1、推断下面每组中两个比能否组成比例?1/3团 1/4 和 1209 16团2 和 32团4 704 和 503 80团2 和 20005让同学依据比例的意义进行推断,老师结合回答板书:1/31211/4 =1209 16团2 = 32团4 7团4H5团3 80团2 = 200团52、连线:自主练习第3题。3、填空:自主练习第6题。4、自主练习第10题:2:1=4: ( ) 1.4:2=( ):3 1/2:1/3=3( ) 12:( )=( ):55、下面的四个数可以组成比例吗?把组成的比例写出来(能写儿 个写几个)。2、 3、 4 和 6由于2 x 6 = 3x4所以这四个数可以组成比例2: 3=4:6 6:4=3:2 4:2=6:3 3:6=2:42: 4=3:6 6:3=4:2 4:6=23 3:2=6:4练习时:给同学充分的时间让同学独立完成,然后沟通沟通。(三)回顾总结在这节课中你又有什么新的收获?篇八:比例的基本性质教学设计教学内容:义务训练课程标准试验教科书人教版数学六班级下册。教学目标:1 ,理解和把握比例的意义和基本性质。2 .能用不同的方法推断两个比能否组成比例,并能正确组成比例。3 .通过观看比较、自主探究,提高分析和概括力量,获得乐观探究 的情感体验。教学过程:一、熟悉比例的意义1 .出示小红、小明在超市购买练习本的一组信息。(1)依据表中信息,你能选出其中两个量写出有意义的比吗?(同学思索片刻,说出了 1.2团3、2团5、1.2团2、3团5等多个比,并说 出每个比表示的意义。老师适时板书。)(2)算算这些比的比值,说说你有什么发觉。(同学说出自己的发觉,老师用连接比值相等的两个比。)(3)说说什么叫比例。(同学各抒己见,师生共同归纳后板书:比例的意义)评析:比的意义、求比值是这节课所学新知的。对此,老师将教材 例题后(相当于练习)的一组信息,这样设计与处理,一是使题材鲜 活,导入更为自然;二是把作为同学思索的对象,给同学供应了肯定 的思维空间,同学学习的热忱和乐观性明显提高。后,老师引导同学 主动进行比较、发觉、归纳,最终实现了对新知的主动建构。2 .即时训练。A.推断下面每个式子是不是比例,依据是什么?(1) 1012111 (2) 15 回 3:10回2a.同学独立思索,小组争论沟通,说说是怎样推断的,进而说明推 断两个比能否组成比例的关键是什么。b.剩下的(1) (2) (4)三个比中有没有能组成比例的?c.上面几个比有没有能和5团4组成比例的,你能不能帮它找一个并 组成比例?它的伴侣有多少个?这些伴侣有什么相同点?评析:认知心理学告知我们,同学对数学概念、规律的熟悉和把握 不是一次完成的,对学问的理解总是要经受一个不断深化的过程。因 此,上例中老师设计了这一环节。即时训练既有运用新知的直接推断, 又有变式和一题多用,较好地体现了层次性、针对性和实效性,它对 促进同学坚固把握新知,敏捷运用新知起到了很好的作用。3 .教学比例各部分的名称。(D引导同学读教材(相关内容),熟悉比例各部分名称。(2)集体沟通。(老师板书:内项、外项)(3)把比例写成分数形式,指出它的内、外项。(4)任意写一个比例,同桌相互说一说比例各部分的名称。二、探究比例的基本性质1.填数。(1)出示比例8回()=()回3。想一想,这两个空可能是哪两 个数。(刚开头时,同学可能从比例的意义的角度去思索,所以填数相对 费时.,渐渐地,同学好像发觉了,填数速度加快。老师将同学的发觉 (如1和24、2和12、0.5和48)板书在括号下面,与同学一起 推断能否组成比例。)(2)观看思索:在填这些数的过程中,你有什么发觉?(这一问题满意了同学的心理需求,同学发觉每次所填的两个内项 之积相等,进而发觉。)(3)再次设问:在这些比例中,这是一种巧合还是在全部的比例 中都有这样的规律呢?(同学看法不一,自发产生验证的需求。)A.先验证黑板上的比例式,再验证自己写的比例式。B.概括比例的基本性质。同桌相互说一说比例的基本性质。(4)学了比例的基本性质有什么作用呢?(同学作答。产生用比 例的基本性质去验证能否组成比例的需要。)评析:这一教学环节正是基于满意同学的而设计的。先由开放性问 题引入,赐予不同认知基础的同学以各自探究的时间和空间,在自主 探究、合作沟通中同学的熟悉经受了由到、由到的过程。通过,两个 问题指明白同学思索的方向,提升了同学思维的层次,使同学人人体 验到的欢乐。在同学主动猎取学问的同时,老师还引领同学经受了科 学探究的过程,这些对同学终身学习无疑是有益的。2.即时训练。应用比例的基本性质,推断下面的两个比能否组成比例。3.601.8 和 4团24团9 和 5010小结:依据比例的基本性质来推断两个比能否组成比例,其实我们 是先假设这两个比能组成比例,假如比例的两个外项的积等于两个内 项的积,假设成立,两个比能组成比例;假如不相等,就不能组成比 例。三、巩固新知,解决问题1 .猜数嬉戏。在下面每个比例中,有一个或两个数被遮掉了,你能依据所学学问 把它猜出来吗?3团5=6团()()05=6(2 ( ) 305= ()0()2 .你能用3、5、6、10这四个数组成不同的比例吗?把它们都写出 来。(同学探究后沟通。)利用这四个数最多能写出几组比例?怎样写既不重复也不遗漏?(依据时间来支配争论,也可留作课后进一步探讨。)评析:练习设计能紧紧围绕教学目标精选练习内容,留意练习的梯 度、层次和思维含量。特殊是最终的挑战性问题把同学带入了的境界, 同学思维活跃,争论热闹。总评:是一堂,但执教者却能。新授课的奇妙导入,数学化过程的 有效绽开,训练的精当、扎实、敏捷,以及在突出同学是学习的仆人, 老师是组织者、引导者的课堂师生关系的定位等方面都颇有新意,因 而,这是一堂以新课程理念做指导,又保持着数学课的朴实无华、扎 实高效的数学课。篇九:比例的基本性质教学设计素养训练目标(一)学问教学点1 .使同学理解把握比例的意义和基本性质。2 .熟悉比例的各部分的名称。(二)力量训练点1 .使同学学会应用比例的意义和基本性质推断两个比能否组成比 例,并能正确组成比例。2 .培育同学的观看力量、推断力量。(三)德育渗透点对同学进一步渗透辩证唯物主义观点的启蒙训练。教学重点:比例的意义和基本性质。教学难点:应用比例的意义或基本性质推断两个比能否组成比例,并能正确地 组成比例。教具学具预备:小黑板、投影片、投影仪。教学步骤一、铺垫孕伏老师出示复习题,回忆有关比的学问。1 .什么叫做比?2 .什么叫做比值?在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性 质。三、练习检测,巩固应用1、填空1、组成比例的四个数,叫做比例的()。两端的两项叫做比例的(), 中间的两项叫做比例的()。2 .在比例里,()等于()。这叫做比例的基本性质3、在a:7=9:b中,()是内项,()是外项,axb=()o4、一个比例的两个内项分别是3和8,则两个外项的积(),两个 外项可能是()和()。2、推断(1)由于 6x9 = 18x3,所以 6羽=18团9 ()(2)在一个比例里,两个内项互为倒数,两个外项也应互为倒数。()3、应用比例的基本性质,推断下面哪组中的两个比可以组成比例。6羽 和8团50.2团2,5和4团50四、回顾总结,反思提升这节课你有什么收获?先独立完成,再指名汇报,全班沟通,集体订正。先推断,并说明理由。巩固同学对比例各部分名称的理解。巩固同学对比例的意义的理解。3 .求下面各比的比值:4 上面哪些比的比值相等?同学回答后,师说:和10团6这两个比的比值相等,也就是 说这两个比是相等的,因此它们可以用等号连接。(板书:4.5团2.7=10团6)二、探究新知1 .比例的意义。出示例1: 一辆汽车第一次2小时行驶80千米,其次次5小时行驶200千米。列表如下:从上表中可以看到,这辆汽车,第一次所行驶的路程和时间的比是:其次次所行驶的路程和时间的比是。这两个比的比值各是多少?它们有什么关系?(1)老师引导同学对上面的问题一一解答。使同学清晰地看到这 两个比的比值都是40,所以这两个比相等。因此就可以写成这样的 等式(2)由老师告知同学:象4.5回2.7 = 10团6、80团2 = 200团5这样的等 式,都是表示两个比相等的式子,我们把它叫做比例。(板书课题: 比例的意义)师问:什么叫做比例:组成比例的关键是什么?生答:表示两个比相等的式子叫做比例。(板书)引导同学谈论、沟通后板书:表示两个比相等的式子叫做比例。(在 下边划。)做一做下面哪组中的两个比可以组成比例?把组成的比例写出来。6010和91211520团5和104第题由老师引导同学完成,思路如下:所以:6团10=9团15其余各题分组争论后由同学独立完成。(4)填空假如两个比的比值相等,那么这两个比就()比例。一个比例,等号左边的比和等号右边的比肯定是()的。2 .比例的基本性质。(1)师以80团2 = 200团5为例说明:组成比例的四个数,叫做比例 的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。(边 叙述边板书如下)(2)让同学看下面这些比例,说出它的外项和内项是多少?4.502.7=1012166团10=9团15(3)让同学计算上面每一个比例中的外项积和内项积,并争论它 们存在什么关系?以80回2=200团5为例,指名来说明。(师边板书如下)外项积是:80x5=400内项积是:2x200=40080x5 = 2x200(4)由同学自己任选两三个比例,计算出它的外项积和内项积。从两个乘积的关系使同学进一步熟悉到,在每个比例里,两个外项的 积都等于两个内项的积。(5)由老师明确:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。(板书)(板书课题:加上,使课题完整。)(6)想一想:假如把比例写成分数形式,等号两端的分子和分母分别交*相乘的积有什么关系?为什么?指名回答后,师板书:(7)做一做应用比例的基本性质,推断下面哪一组中的两个比可以组成比例。603 和 8团50.2团2.5 和 40503 .阅读课本第9、10页的内容并填空。三、巩固进展1 .说一说比和比例有什么区分。争论后指名说明:比是表示两个数相除的关系,有两项;比例是一个等式,表示两个 比相等的关系,有四个项。2 .在6团5 = 30团25这个比例中,外项是()和(),内项是O和()。依据比例的基本性质可以写成()x () = () x ()。3 .先应用比例的意义,再应用比例的基本性质,推断下面哪组中的两个比可以组成比例。(1) 609 和 9012(2) L402 和 7国104.下面的四个数可以组成比例吗?把组成的比例写出来。(能组几 个就组几个)2、3、4 和 6四、全课小结这节课我们学习了比例的意义和基本性质,并学会了应用比例的意 义和基本性质组比例。五、布置作业练习一第3题。篇十:比例的基本性质教学设计学习目标1进一步理解比例的意义,懂得比例各部分名称。2 .经受探究比例基本性质的过程,理解并把握比例的基本性质。3 .能运用比例的基本性质推断两个比能否组成比例。重点难点重点:比例的基本性质。难点:发觉并总结比例的基本性质一.复习导入1、什么是比例的意义?2.推断下面的两个比能不能组成比例。61310 和 9015二.揭示课题,出示学习目标1 .进一步理解比例的意义,懂得比例各部分名称。2 .经受探究比例基本性质的过程,理解并把握比例的基本性质。3 .能运用比例的基本性质推断两个比能否组成比例。活动一(进一步理解比例的.意义,懂得比例各部分名称。)组成比例的四个数,叫做比例的()。两端的两项叫做比例的()o中间的两项叫做比例的()o在24:16:60: 40中,()和()是比例的外项,()和()是比例的内项。活动二(经受探究比例基本性质的过程,理解并把握比例的基本性 质。)1 .在24:16二60: 40中,两个外项的积是(),两个内项的积是(), 两个外项的积和两个内项的积有什么关系?2 .把24:16二60: 40改写成分数形式是:接着把等号两边的分子和分母分别交叉相乘,所得的积有什么关系?3 .()叫做比例的基本性质。活动三(能运用比例的基本性质推断两个比能否组成比例。)应用比例的基本性质,推断下面两个比能不能组成比例。0.202.5 和 4050 609 和 9012完成P34做一做。篇十一:比例的基本性质教学设计教学内容:第43页例4,完成和练习十的04题。教学目标:1、使同学熟悉比例的以及和。2、理解并把握比例的基本性质,会应用比例的基本性质正确推断 两个比能否组成比例。3、通过自主学习,让同学经受探究的过程,体验胜利的欢乐。教学重、难点:理解并把握比例的基本性质;引导观看,自主探究 发觉比例的基本性质。教学过程:一、创设情境,教学比例的基本学问。1、复习:师:什么叫比例?下面每组中的两个比能否组成比例?出示:1/301/4 和 1209 105 和 0.804 704 和 503 80团2 和 20005同学依据比例的意义进行推断,老师结合回答板书:1/3团 1/4 = 12团9 7团4H5团3 1 团5 = 0.8回4 8002 = 20012152、熟悉比例各部分的名称(1)介绍:组成比例的四个数,叫做比例的项。(2) 3 : 5 = 18 : 30同学尝试起名。师介绍:比例的两项叫做比例的外项,中间的两项叫做比例的内项。3 : 5 = 18 : 30内项外项(3)假如把比例写成分数的形式,你还能指出它的内、外项吗?出示:3/5=18/30(4)已经知道了比例各部分名称,接下来我们一起来讨论比例是 否也有什么规律或者性质,有爱好吗?师:刚才,你们是依据比例的意义先求出比值再作出推断的。老师 不是这样想的,可很快就推断好了,想知道其中的隐秘吗?告知你们, 老师是运用了比例的基本性质进行推断的。二、教学例41、提问:你能依据图中的数据写出比例吗?(1)引导同学写出尽可能多的比例。并逐一板书,同时说出它们 的内项和外项。(2)引导思索:认真观看写出的这些比例式,你能否发觉有没有 什么相同的特点或规律呢?2、同学先独立思索,再小组沟通,探究规律。(板书:两个外项的积等于两个内项的积。)3、验证:是不是任意一个比例都有这样的规律?团课件显示复习题(4组):1/301/4 和 12I39; 1团5 和 0.804; 7团4 和 5团3; 8002 和 200团5同学验证。团同学任意写一个比例并验证。老师将同学所举比例有意写成分数形式,追问:哪两个是内项,哪 两个是外项,让同学算出积并结合回答板书。通过交*连线使同学明 确:在这样的比例中,比例的基本性质可以表达为:把等号两端的分 子、分母交*相乘,结果相等。师:老师也写了一个比例(板书:302 = 504),怎么两个外项的积 不等于两个内项的积!你们发觉的规律可能是有问题的。引导同学得出:你举的例子从反面证明白我们发觉的规律是正确的。 由于3团2和5团4这两个比是不能组成比例的。只有在比例中,两个外 项的积等于两个内项的积。师:很有道理!同学们很会观看,很会猜想,很会验证,自己发觉 了比例的基本性质。板书:在比例中,两个外项的积等于两个内项的积。这叫做比例的 基本性质。回假如用字母表示比例的四项,即a: b=c: d,那么这个规律可以 表示成什么。(4)完整板书:在比例里,两个外项的积等于两个内项的积。这 就是比例的基本性质。读书P44页,勾画5、小结:刚才我们是怎样发觉比例的基本性质的?(写了一些比 例式,观看比较,发觉规律,再验证)6、比例的基本性质的应用(1)比例的基本性质有什么应用?(2)做:出示。A、先假设这两个比能组成比例:让同学自己依据比例的基本性质推断,假如能组成比例就写出这 个比例式。提问:3. 6 : 1. 8和0. 5 : 0. 25能组成比例吗?依 据比例的基本性质,能推断两个比能不能组成比例吗?b、说出写出的比例的内项和外项分别