勾股定理说课稿.pdf
勾股定理说课稿 勾股定理说课稿 1 说教材 本课时是北师大版八年级(上)数学第 14 章第二节内容,是在掌握勾股定理的基础上对勾股定理的应用之一。勾股定理是我国古数学的一项伟大成就。勾股定理为我们提供了直角三角形的三边间的数量关系,它的逆定理为我们提供了判断三角形是否属于直角三角形的依据,也是判定两条直线是否互相垂直的一个重要方法,这些成果被广泛应用于数学和实际生活的各个方面。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析,使学生获得较为直观的印象,通过联系和比较,了解勾股定理在实际生活中的广泛应用。据此,制定教学目标如下:1。知识和方法目标:通过对一些典型题目的思考,练习,能正确熟练地进行勾股定理有关计算,深入对勾股定理的理解。2。过程与方法目标:通过对一些题目的探讨,以达到掌握知识的目的。3。情感与态度目标:感受数学在生活中的应用,感受数学定理的美。教学重点:勾股定理的应用。教学难点:勾股定理的正确使用。教学关键:在现实情境中捕抓直角三角形,确定好直角三角形之后,再应用勾股定理。说教法和学法 1。以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。2。切实体现学生的主体地位,让学生通过观察,分析,讨论,操作,归纳理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。3。通过演示实物,引导学生观察,操作,分析,证明,使学生获得新知的成功感受,从而激发学生钻研新知的欲望。教学程序 本节内容的教学主要体现在学生的动手,动脑方面,根据学生的认知规律和学习心理,教学程序设置如下:一。回顾问:勾股定理的内容是什么?勾股定理揭示了直角三角形三边之间的关系,今天我们来学习这个定理在实际生活中的应用。二。新授课例 1。如图所示,有一个圆柱,它的高 AB等于 4 厘米,底面周长等于 20 厘米,在圆柱下底面的 A 点有一只蚂蚁,它想吃到上底面与 A 点相对的 C 点处的食物,沿圆柱侧面爬行的最短路线是多少?(课本 P57 图 14。2。1)学生取出自制圆柱,尝试从 A 点到 C 点沿圆柱侧面画出几条路线。思考:那条路线最短?如图,将圆柱侧面剪开展成一个长方形,从 A 点到 C 点的最短路线是什么?你画得对吗?蚂蚁从 A 点出发,想吃到 C 点处的食物,它沿圆柱侧面爬行的最短路线是什么?思路点拨:引导学生在自制的圆柱侧面上寻找最短路线;提醒学生将圆柱侧面展开成长方形,引导学生观察分析发现“两点之间的所有线中,线段最短”。学生在自主探索的基础上兴趣高涨,气氛异常的活跃,他们发现蚂蚁从 A 点往上爬到 B 点后顺着直径爬向 C 点爬行的路线是最短的!我也意外的发现了这种爬法是正确的,但是课本上是顺着侧面往上爬的,我就告诉学生:“课本中的圆柱体是没有上盖的”。只有这样课本上的解答才算是完全正确的。例 2。(课本 P58图 14。2。3)思路点拨:厂门的宽度是足够的,这个问题的关键是观察当卡车位于厂门正中间时其高度是否小于 CH,点D 在离厂门中线 0。8 米处,且 CDAB,与地面交于 H,寻找出 RtOCD,运用勾股定理求出 CD=0。6,CH=0。6+2。3=2。92。5 可见卡车能顺利通过。详细解题过程看课本引导学生完成 P58 做一做。三。课堂小练 1。课本 P58 练习第 1,2 题。2。探究:一门框的尺寸如图所示,一块长 3 米,宽 2。2 米的薄木板是否能从门框内通过?为什么?四。小结直角三角形在实际生活中有更为广泛的应用希望同学们能紧紧抓住直角三角形的性质,学透勾股定理的具体应用,那样就能很轻松的解决现实生活中的许多问题,达到事倍功半的效果。勾股定理说课稿 2 课题:勾股定理 内容:教材分析、教法学法分析、教学过程设计、设计说明 一、教材分析 (一)教材所处的地位 这节课是华师大九年制义务教育课程标准实验教科书八年级总第 19 章第 2 节探索勾股定理,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。(二)根据课程标准,本课的教学目标是:1、能说出勾股定理的内容。2、会初步运用勾股定理进行简单的计算和实际运用。3、在探索勾股定理的过程中,让学生经历“观察猜想归纳验证”的数学思想,并体会数形结合和特殊到一般的思想方法。4、通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。(三)本课的教学重点:探索勾股定理 本课的教学难点:以直角三角形为边的正方形面积的计算。二、教法与学法分析 教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题实验操作归纳验证问题解决课堂小结布置作业六部分。学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。三、教学过程设计 (一)数学史导入 以毕达哥拉斯发现勾股定理引入新课,不仅自然,而且反映了数学来源于实际生活,数学是从人的需要中产生这一认识的基本观点,同时也体现了知识的发生过程,而且解决问题的过程也是一个“数学化”的过程。(二)实验操作 1、投影课本图的有关直角三角形问题,让学生计算正方形 A,B,C 的面积,学生可能有不同的方法,不管是通过直接数小方格的个数,还是将 C 划分为 4 个全等的等腰直角三角形来求等等,各种方法都应予于肯定,并鼓励学生用语言进行表达,引导学生发现正方形 A,B,C 的面积之间的数量关系,从而学生通过正方形面积之间的关系容易发现对于等腰直角三角形而言满足两直角边的平方和等于斜边的平方。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。2、接着让学生思考:如果是其它一般的直角三角形,是否也具备这一结论呢?于是投影图 13,图 14,同样让学生计算正方形的面积,但正方形 C 的面积不易求出,可让学生在预先准备的方格纸上画出图形,在剪一剪,拼一拼后学生也不难发现对于一般的以整数为边长的直角三角形也有两直角边的平方和等于斜边的平方。这样设计不仅有利于突破难点,而且为归纳结论打下了基础,让学生体会到观察、猜想、归纳的思想,也让学生的分析问题和解决问题的能力在无形中得到了提高,这对后面的学习及有帮助。3、给出一个边长单位为 5,12,13,这种含小数的直角三角形,让学生计算是否也满足这个结论,设计的目的是让学生体会到结论更具有一般性。(三)归纳验证 1、归纳通过对边长为整数的等腰直角三角形到一般直角三角形再到边长含小数的直角三角形三边关系的研究,让学生用数学语言概括出一般的结论,尽管学生可能讲的不完全正确,但对于培养学生运用数学语言进行抽象、概括的能力是有益的,同时发挥了学生的主体作用,也便于记忆和理解,这比教师直接教给学生一个结论要好的多。2、验证为了让学生确信结论的正确性,引导学生在纸上任意作一个直角三角形,通过动手操作拼图来验证结论的正确性和广泛性。这一过程有利于培养学生严谨、科学的学习态度。然后引导学生用符号语言表示,因为将文字语言转化为数学语言是学习数学学习的一项基本能力。接着教师向学生介绍“勾,股,弦”的含义、勾股定理,进行点题,并指出勾股定理只适用于直角三角形。最后向学生介绍古今中外对勾股定理的研究,对学生进行爱国主义教育和数学文化熏陶。(四)问题解决 让学生解决生活中的实际问题,学生从中能体会到成功的喜悦。完成课本“想一想”进一步体会勾股定理在实际生活中的应用,数学是与实际生活紧密相连的。(五)课堂小结 主要通过学生回忆本节课所学内容,从内容、应用、数学思想方法、获取新知的途径方面先进行小结,后由教师总结。(六)布置作业 习题 19.2(1-5)有兴趣的同学可以查找另外的证明方法,写出1-2 种出来 四、设计说明 1、本节课是公式课,根据学生的知识结构,我采用的教学流程是:提出问题实验操作归纳验证问题解决课堂小结布置作业六部分,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。2、探索定理采用了面积法,引导学生利用实验由特殊到一般再到更一般的对直角三角形三边关系的探索和研究,得出结论。这种一般化的思想方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对学生的终身发展也有一定的作用。3、关于练习的设计,除两个实际问题和课本习题以外,还让有兴趣的同学可以查找另外的证明方法,写出 1-2 种出来 4、本课小结从内容,应用,数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学数学、用数学的意识是有很大的裨益的。勾股定理说课稿 3 一、教材分析 1教材的地位和作用 它也是几何中最重要的定理,它将形和数密切联系起来,在数学的发展中起着重要的作用。因此他的教育教学价值就具体体现在如下三维目标中:知识与技能:1、经历勾股定理的探索过程,体会数形结合思想。2、理解直角三角形三边的关系,会应用勾股定理解决一些简单的实际问题。过程与方法:1、经历观察猜想归纳验证等一系列过程,体会数学定理发现的过程,由特殊到一般的解决问题的方法。2、在观察、猜想、归纳、验证等过程中培养学生们的数学语言表达能力和初步的逻辑推理能力。情感、态度与价值观:1、通过对勾股定理历史的了解,感受数学文化,激发学习兴趣。2、在探究活动中,体验解决问题方法的多样性,培养学生们的合作意识和然所精神。3、让学生们通过动手实践,增强探究和创新意识,体验研究过程,学习研究方法,逐步养成一种积极的生动的,自助合作探究的学习方式。由于八年级的学生们具有一定分析能力,但活动经验不足,所以 本节课教学重点:勾股定理的探索过程,并掌握和运用它。教学难点:分割,补全法证面积相等,探索勾股定理。二.教法学法分析:要上好一堂课,就是要把所确定的三维目标有机地溶入到教学过程中去,所以我采用了“引导探究式”的教学方法:先从学生们熟知的生活实例出发,以生活实践为依托,将生活图形数学化,然后由特殊到一般地提出问题,引导学生们在自主探究与合作交流中解决问题,同时也真正体现了数学课堂是学生们自己的课堂。学法:我想通过“操作+思考”这样方式,有效地让学生们在动手、动脑、自主探究与合作交流中来发现新知,同时让学生们感悟到:学习任何知识的最好方法就是自己去探究。三、教学程序设计 1、故事引入新课,激起学生们学习兴趣。牛顿,瓦特的故事,让学生们科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。毕达哥拉斯的发现引入新课。2、探索新知 在这里我设计了四个内容:探索等腰直角三角形三边的关系 边长为 3、4、5 为边长的直角三角形的三边关系 学生们画两直角边为 2,6 的直角三角形,探索三边的关系 三边为 a、b、c 的直角三角形的三边的关系,(证明)勾股定理历史介绍,让学生们体会勾股定理的文化价值。体现从特殊到一般的发现问题的过程。3、新知运用:举出勾股定理在生活中的运用。(老师讲解勾股定理在生活中的运用)在直角三角形中,已知B=90,AB=6,BC=8,求 AC.要做一个人字梯,要求人字梯的跨度为 6 米,高为 4米,请问怎么做?如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”他们仅仅少走了步路(假设 2 步为 1 米),却踩伤了花草 4、小结本课:学完了这节课,你有什么收获?老师补充:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。数学来源于实践,而又应用于实践。解决一个问题的方法是多样性的,我们要多思考。勾股定是数学史上的明珠,证明方法有很多种,我们将在下一节课学习它。勾股定理说课稿 4 各位考官,大家好,我是 X 号考生,今天我说课的内容是勾股定理的逆定理。根据新课程标准,我将以教什么,怎么教,为什么这么教为思路开展我的说课,首先,我先来说说我对教材的理解。教材分析是上好一堂课的前提条件,在上好一堂课之前,我首先谈一谈对教材的理解。一、说教材 “勾股定理的逆定理”一节?是在上节“勾股定理”之后继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化。勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。二、说学情 中学生心理学研究指出,初中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。学生此前学习了三角形有关的知识,掌握了直角三角形的性质和勾股定理,学生在此基础上学习勾股定理的逆定理可以加深理解。三、说教学目标 根据数学课标的要求和教材的具体内容结合学生实际我确定了如下教学目标。理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。利用勾股定理的逆定理判定一个三角形是不是直角三角形。通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。四、说教学重难点 重点:勾股定理逆定理的应用;难点:探究勾股定理逆定理的证明过程。五、说教学方法 科学合理的教学方法能使教学效果事半功倍,达到教与学的和谐完美统一。基于此,我准备采用的教法是讲练结合法,小组讨论法。六、说教学过程 (一)导入新课 在导入新课环节,我会采用温故知新的导入方法,先让学生回顾勾股定理有关知识,并引入本节课的课题勾股定理逆定理。通过复习回顾能很好地将新旧知识联系起来,使学生形成对知识的系统的认识。并且由旧知开始,能很好地帮助学生克服畏难情绪。(二)探究新知 一开课我就提出了与本节课关系密切、学生用现有的知识可探索却又解决不好的问题去提示本节课的探究宗旨,演示古代埃及人把一根长绳打上等距离的 13 个结,然后便得到一个直角三角形这是为什么?这个问题一出现,马上激起学生已有知识与待研究知识的认识冲突,引起了学生的重视激发了学生的兴趣,因而全身心地投入到学习中来创造了我要学的气氛,同时也说明了几何知识来源于实践不失时机地让学生感到数学就在身边。因为几何来源于现实生活,对初二学生来说选择适当的时机让他们从个体实践经验中开始学习可以提高学习的主动性和参与意识,所以勾股定理的逆定理不是由教师直接给出的,而是让学生通过动手折纸在具体的实践中观察满足条件的三角形直观感觉上是什么三角形,再用直角三角形插入去验证猜想。这样设计是因为勾股定理逆定理的证明方法是学生第一次见,它要求按照已知条件作一个直角三角形,根据学生的智能状况学生是不容易想到的,为了突破这个难点,我让学生动手裁出了一个两直角边与所折三角形两条较小边相等的直角三角形,通过操作验证两三角形全等,从而不仅显示了符合条件的三角形是直角三角形,还孕育了辅助线的添法,为后面进行逻辑推理论证提供了直观的数学模型。接下来就是利用这个数学模型,从理论上证明这个定理。从动手操作到证明,学生自然地联想到了全等三角形的性质,证明它与一个直角三角形全等顺利作出了辅助直角三角形,整个证明过程自然无神秘感,实现了从生动直观向抽象思维的转化,同时学生亲身体会了动手操作观察猜测探索论证的全过程。这样学生不是被动接受勾股定理的逆定理?因而使学生感到自然、亲切。学生的学习兴趣和学习积极性有所提高,使学生确实在学习过程中享受到自我创造的快乐。在同学们完成证明之后,可让他们对照课本把证明过程严格的阅读一遍充分发挥教科书的作用养成学生看书的习惯这也是在培养学生的自学能力。(三)巩固提高 本着由浅入深的原则安排了三个题目。演示第一题比较简单(判断下列三条线段组成的三角形是不是直角三角形,比如 15、8、17;13、14、15 等等)让学生口答让所有的学生都能完成。第二题则进了一层用字母代替了数字,绕了一个弯,既可以检查本课知识又可以提高灵活运用以往知识的能力。思维提高了课堂教学的效果和利用率。在变式训练中我还采用讲、说、练结合的方法,教师通过观察、提问、巡视、谈话等活动、及时了解学生的学习过程,随时反馈调节教法同时注意加强有针对性的个别指导把发展学生的思维和随时把握学生的学习效果结合起来。(四)小结作业 在小结环节,我会随机询问学生勾股定理的逆定理是什么?如果判断一个三角形是不是直角三角形,以及勾股定理的逆定理的应用需要注意点什么等问题,先让学生归纳本节知识和技能,然后教师作必要的补充,尤其是注意总结思想方法培养能力方面比如辅助线的添法。设计意图:这样设计可以帮助学生以反思的形式回忆本节课所学的知识,加深对知识的印象,有利于学生良好的数学学习习惯的养成。由于学生的思维素质存在一定的差异,教学要贯彻“因材施教”的原则,为此我安排了两组作业。第一组是基础题,我会用 ppt 出示关于勾股定理的逆定理的计算题目,这样有利于学生学习习惯的培养,以及提高他们学好数学的信心。第二组是开放性题目,让学生课后思考总结一下判定一个三角形是直角三角形的方法。勾股定理说课稿 5 一、说教材分析:(一)本节内容在全书和章节的地位 这节课是九年制义务教育课程标准实验教科书(华东版),八年级第十九章第二节“勾股定理”第一课时。勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形的主要依据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。(二)三维教学目标:1.理解并掌握勾股定理的内容和证明,能灵活运用勾股定理及其计算;通过观察分析,大胆猜想,并且探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。2.在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学思想,并且体会数形结合和从特殊到一般的思想方法。3.通过介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。(三)教学重点、难点:勾股定理的证明与运用 用面积法等方法证明勾股定理 对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。:创设情景,激发思维:创设生动、启发性的问题情景,激发学生的问题冲突,让学生在感到“有趣”、“有意思”的状态下进入学习过程;自主探索,敢于猜想:充分让自己动手操作,大胆猜想数学问题的结论,老师是整个活动的组织者,更是一位参入者,学生之间相互交流、协作,从而形成生动的课堂环境;张扬个性,展示风采:实行“小组合作制”,各小组中自己推荐一人担任“发言人”,一人担任“书记员”,在讨论结束后,由小组的“发言人”汇报本小组的讨论结果,并可上台利用“多媒体视频展示台”展示本组的优秀作品,其他小组给予评价。这样既保证讨论的有效性,也调动了学生的学习积极性。二、说教法与学法分析 数学是一门培养人的思维,发展人的思维的重要学科,因此在教学中,不仅要使学生“知其然”,而且还要使学生“知其所以然”。针对初二年级学生的认知结构和心理特征,本节课可选择“引导探索法”,由浅到深,由特殊到一般的提出问题。引导学生自主探索,合作交流,这种教学理念紧随新课改理念,也反映了时代精神。基本的教学程序是“创设情景-动手操作-归纳验证-问题解决-课堂小结-布置作业”六个方面。新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生并且参入到学习活动中,鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使得学生真正的成为学习的主人。三、说教学过程设计 (一)创设情景 多媒体课件演示 FLASH 小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高 3 米,消防队员取来 6.5米长的云梯,如果梯子的底部离墙基的距离是 2.5 米,请问消防队员能否进入三楼灭火?问题的设计有一定的挑战性,目的是激发学生的探究欲望,老师要注意引导学生将实际问题转化为数学问题,也就是“已知一直角三角形的两边,求第三边?”的问题。学生会感到一些困难,从而老师指出学习了今天的这节课后,同学们就会有办法解决了。这种以实际问题作为切入点导入新课,不仅自然,而且也反映了“数学来源于生活”,学习数学是为更好“服务于生活”。(二)动手操作 课件出示课本 P99 图 19.2.1:观察图中用阴影画出的三个正方形,你从中能得出什么结论?学生可能会考虑到各种不同的思考方法,老师要给予肯定,并且要鼓励学生用语言进行描述,引导学生发现SP+SQ=SR(此时让小组“发言人”发言),从而让学生通过正方形的面积之间的关系发现:对于等腰直角三角形,其两直角边的平方和等于斜边的平方,即当C=90,AC=BC 时,则 AC2+BC2=AB2。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。紧接着让学生思考:上述是在等腰直角三角形中的情况,那么在一般情况下的直角三角形中,是否也存在这一结论呢?于是再利用多媒体投影出 P100 图 19.2.2(一般直角三角形)。学生可以同样求出正方形 P 和 Q 的面积,只是求正方形 R 的面积有一些困难,这时可让学生在预先准备的方格纸上画出图形,再剪一剪、拼一拼,通过小组合作、交流后,学生就能发现:对于一般的以整数为边长的直角三角形也存在两直角边的平方和等于斜边的平方。通过学生的动手操作、合作交流,来获取知识,这样设计有利于突破难点,也让学生体会到观察、猜想、归纳的数学思想及学习过程,提高学生的分析问题和解决问题的能力。再问:当边长不为整数的直角三角形是否也是存在这一结论呢?投影例题:一个边长分别为 1.5,3.6,3.9 这种含有小数的直角三角形,让学生计算。这样设计的目的是让学生体会到“从特殊到一般”的情形,这样归纳的结论更具有一般性。(三)归纳验证 通过动手操作、合作交流,探索边长为整数的等腰直角三角形到一般的直角三角形,再到边长为小数的直角三角形的两直角边与斜边的关系,让学生在整个学习过程中感受学数学的乐趣,使学生学会“文字语言”与“数学语言”这两种表达方式,各小组“发言人”的积极表现,整一堂课充分发挥学生的主体作用,真正获取知识,解决问题。先后的三次验证“勾股定理”这一结论,期间学生动手进行了画图、剪图、拼图,还有测量、计算等活动,使学生从中体会到数形结合和从特殊到一般的数学思想,而且这一过程也是有利于培养学生严谨、科学的学习态度。(四)问题解决 让学生解决开始上课前所提出的问题,前后呼应,让学生体会到成功的快乐。自学课本 P101 例 1,然后完成 P102 练习。(五)课堂小结 1.小组成员从内容、数学思想方法、获取知识的途径进行小结,后由“发言人”汇报,小组间要互相比一比,看看哪一个小组表现最佳。2.教师用多媒体介绍“勾股定理史话”周髀算径:西周的商高(公元一千多年前)发现了“勾三股四弦五”这一规律。康熙数学专著勾股图解有五种求解直角三角形的方法,积求勾股法是其独创。目的是对学生进行爱国主义教育,激励学生要奋发向上。(六)布置作业 课本 P104 习题 19.2 中的第 1.2.3 题。目的一方面是巩固“勾股定理”,另一方面是让学生进一步体会定理与实际生活的联系。勾股定理说课稿 6 尊敬的.各位领导,各位老师:大家好!今天我说课的内容是初中八年级数学人教版教材第十八章第一节勾股定理(第一课时),下面我分五部分来汇报我这节课的教学设计,这就是”教材分析”、”学情分析”、”教法选择”、”学法指导”、”教学过程”。一、教材分析 (一)教材地位和作用 勾股定理是几何中的重要定理之一,它揭示的是直角三角形中三边的数量关系,将几何图形与数字联系起来。它在数学的发展中起过重要的作用,在生产生活中有着广泛的应用。而且它在其它自然学科中也常常用到。因此,这节课有着举足轻重的地位。(二)教学目标 根据新课程标准的要求和本课的特点,结合学生的实际情况,我确定了本课的教学目标:1、知识与技能方面 了解勾股定理的文化背景,经历探索勾股定理的过程,掌握直角三角形三边之间的数量关系,并能简单应用。2、过程与方法方面 经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,能感受到数学思考过程的条理性,发展数学的说理和简单的推理的意识,和语言表达的能力,并体会数形结合和特殊到一般的思想方法。3、情感态度与价值观方面 (1)通过了解勾股定理的历史,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。(2)通过研究一系列富有探究性的问题,培养学生与他人交流、合作的意识和品质。(三)教学重点难点 教学重点:掌握勾股定理,并能用它来解决一些简单的问题。教学难点:勾股定理的证明。二、学情分析 我们班日常经常使用多媒体辅助教学。经过一年多的几何学习,学生对几何图形的观察,几何图形的分析能力已初步形成。部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。现在的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和表现自己才华的机会;更希望教师满足他们的创造愿望。三、教法选择 根据本节课的教学目标、教学内容以及学生的认知特点,结合我校的“当堂达标”教学模式,我在教法上采用引导发现法为主,并以分析法、讨论法相结合。设计”观察讨论归纳”的教学方法,意在帮助学生通过自己动手实验和直观情景观察,从实践中获取知识,并通过讨论来深化对知识的理解。本节课采用了多媒体辅助教学,能够直观、生动的反应图形,增加课堂的容量,同时有利于突出重点、分散难点,增强教学形象性,更好的提高课堂效率。四、学法指导:为了充分体现新课标的要求,培养学生的观察分析能力,逻辑思维能力,积累丰富的数学学习经验,这节课主要采用观察分析,自主探索与合作交流的学习方法,使学生积极参与教学过程。在教学过程中展开思维,培养学生提出问题、分析问题、解决问题的能力,进一步体会观察、类比、分析、从特殊到一般等数学思想。借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主人。五、教学过程 根据新课标中”要引导学生投入到探索与交流的学习活动中”的教学要求,本节课的教学过程我是这样设计的:(一)创设情境,引入新课 一个设计合理的情境引入可以说在一定程度上决定着学生能否带着兴趣积极投入到本节课的学习中。为了体现数学源于生活,数学是从人的需要中产生的,学习数学的目的是为了用数学解决实际问题。我设计了以下题目:星期日老师带领全班同学去某山风景区游玩,同学们看到山势险峻,查看景区示意图得知:这座山主峰高约为 900米,如图:为了方便游人,此景区从主峰A 处向地面 B 处架了一条缆车线路,已知山底端 C 处与地面 B 处相距 1200 米,ACB=90,你能用所学知识算出缆车路线 AB 长应为多少?答案是不能的。然后教师指出,通过这节课的学习,问题将迎刃而解。设计意图:以趣味性题目引入。从而设置悬念,激发学生的学习兴趣。教师引导学生把实际问题转化为数学问题,这其中渗透了一种数学思想,对于学生也是一种挑战,能激发学生探究的欲望,自然引出下面的环节。紧接着出示本节课的学习目标:1、了解勾股定理的文化背景,体验勾股定理的探索过程。2、掌握勾股定理的内容,并会简单应用。(二)勾股定理的探索 1、猜想结论 (1)探究一:等腰直角三角形三边关系。由课本 64 页毕达哥拉斯的故事,探究等腰直角三角形三边关系。结合课件中格点图形的面积,学生自主探究,通过计算、讨论、总结,得出结论:等腰直角三角形的斜边的平方等于两直角边的平方和。在此过程中,给学生充分的时间、观察、比较、交流,最后通过活动让学生用语言概括总结。提问:等腰直角三角形有这样的性质,其他的直角三角形也有这样的性质吗?(2、)探究二:一般的直角三角形三边关系。在课件中的格点图形中,利用面积,再次探究直角三角形的三边关系。学生自主探究,通过计算、讨论、总结,得出结论:在直角三角形中,两直角边的平方和等于斜边的平方。设计意图:组织学生进行讨论,在此基础上教师引导学生从三边的平方有何大小关系入手进行观察。教师在多媒体课件上直观地演示。通过学生自己探索、讨论,由学生自己得出结论。这样,让学生参与定理的再发现过程,他们通过自己观察、计算所得出的定理,在心理产生自豪感,从而增强学生的学习数学的自信心。2、证明猜想 目前世界上证明该勾股定理的方法有很多种,而我国古代数学家利用拼接、割补图形,计算面积的思路提供了很多种证明方法,下面我们通过古人赵爽的方法进行证明。学生分组活动,根据图形的面积进行计算,推导出勾股定理的一般形式:a+b=c。即直角三角形两直角边的平方和等于斜边的平方、设计意图:通过利用多媒体课件的演示,更直观、形象的向学生介绍用拼接、割补图形,计算面积的证明方法,使学生认识到证明的必要性、结论的确定性,感受到前人的伟大和智慧。3、简要介绍勾股定理命名的由来 我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作周髀算经中、我国称这个结论为”勾股定理”,西方毕达哥拉斯于公元前五世纪发现了勾股定理,但他比商高晚出生五百多年。设计意图:对比以上事实对学生进行爱国主义教育,激励他们奋发向上。(三)勾股定理的应用 1、利用勾股定理,解决引入中的问题。体会数学在实际生活中的应用。2、教学例 1:课本 66 页探究 1 师生讨论、分析:木板的宽 2、2 米大于 1 米,所以横着不能从门框内通过 木板的宽 2、2 米大于 2 米,所以竖着不能从门框内通过 因为对角线 AC 的长度最大,所以只能试试斜着能否通过 从而将实际问题转化为数学问题 提示:(1)在图中构造出一个直角三角形。(连接 AC)(2)知道直角ABC 的那条边?(3)知道直角三角形两条边长求第三边用什么方法呢?设计意图:此题是将实际为题转化为数学问题,从中抽象出 RtABC,并求出斜边 AC 的长。本例意在渗透实际问题和勾股定理的知识联系。通过系列问题的设置和解决,旨在降低难度,分散难点,使难点予以突破,让学生掌握勾股定理在具体问题中的应用,使学生获得新知,体验成功,从而增加学习兴趣。(四)、课堂练习习题 18、11、5。学生板演,师生点评。设计意图:通过练习使学生加深对勾股定理的理解,让学生比较练习题和例题中条件的异同,进一步让学生理解勾股定理的运用。(五)课堂小结 对学生提问:”通过这节课的学习有什么收获?”学生同桌间畅谈自己的学习感受和体会,并请个别学生发言。设计意图:让学生自己小结,活跃了气氛,做到全员参与,理清了知识脉络,强化了重点,培养了学生口头表达能力。(六)达标训练与反馈 设计意图:必做题较为简单,要求全体学生完成;选作题有一点的难度,基础较好的学生能够完成,体现分层教学。以上内容,我仅从”说教材”,”说学情”、”说教法”、”说学法”、”说教学过程”五个方面来说明这堂课”教什么”和”怎么教”,也阐述了”为什么这样教”,让学生人人参与,注重对学生活动的评价,探索过程中,会为学生创设一个和谐、宽松的情境。希望得到各位专家领导的指导与指正,谢谢!勾股定理说课稿 7 尊敬的各位评委、老师,大家好!我说课的题目是华师版八年级上册第十四章第一节第一课时勾股定理。教材分析:如果说数学思想是解决数学问题的一首经典老歌,那么本节课蕴含的由特殊到一般的思想、数学建模的思想、转化的思想就是歌中最为活跃的音符!本节的内容是在学习了二次根式之后的教学,是在学生已经掌握了直角三角形的有关性质的基础上进行的后继学习,是中学数学几个重要定理之一。它揭示了直角三角形三条边之间的数量关系,是解直角三角形的主要根据之一,是解决四边形、圆等知识的灵魂,在实际生活中有着极其广泛的应用。勾股定理的发现、验证和应用蕴含着丰富的文化价值,在理论上占有重要地位,因此本节在教材中起着承前启后的桥梁作用。新课标下的数学教学不仅是知识的教学,更应注重能力的培养及情感的教育,因此,根据本节在教学中的地位和作用,结合初二学生不爱表现、好静不好动的特点,我确定本节教学目标如下:1、探索并利用拼图证明勾股定理。2、利用勾股定理解决简单的数学问题。3、感受数学文化,体会解决问题方法的多样性和数形结合的思想。本着课标的要求,在吃透教材的基础上,我确定本节的教学重点、难点、关键如下:勾股定理的证明和简单应用是本节的重点,用拼图的方法证明勾股定理是难点,而解决难点的关键是充分利用图形面积的各种表示方法构造恒等式。为了讲清重点、突破难点、抓住关键,使学生达到预定目标,我对教法和学法分析如下:教法分析:新课程标准强调要从学生已有的经验出发,最大限度的激发学生学习积极性,新课程下的数学教师更应是学生学习活动的组织者、引导者、合作者,因此,鉴于教材的重点和初二学生的认知水平,我以学生充分预习为前提,以学生的动手操作、讲解为中心,让学生亲历亲为,体会做数学的过程,激发学生的探索兴趣,使课堂活跃起来,提高课堂效率。运用观察法、归纳法、引导发现法、讨论法等多种教学方法相结合的形式,让学生充分展示预习成果,体验成功的快乐,为终身学习和发展打下坚实的基础。为了增大课堂容量、给学生创设高效的数学课堂,给学生提供足够从事数学活动的时间,以导学案的形式、运用多媒体辅助教学。学法分析:学法是学生再生知识的法宝,为了把学生学习过程当作认知事物的过程来解决,教学中我首先引导学生先动手操作,再合作交流,培养学生良好的学习品质和与人合作的能力;接下来,我让学生独立思考,点拨学生用特殊到一般的思想大胆偿试,水到渠成的突出勾股定理的探索这一重点,然后通过学生展示成果让学生抓住用不同的方式拼出图形,从而用不同的方式表示图形面积建立恒等式这一关健,以自己拼图操作、讲解展示预习成果突破定理证明这一难点,指导学生严谨、合理的书写格式,培养学生的逻辑思维能力和语言表达能力。为了充分调动学生的学习积极性,创设优化高效的数学课堂,我以导学案的方式循序见进的设计教学流程。以学生必读课本 4852 页,选读课本 55、56 页的课前预习为前提,共分四个环节来进行教学 1、勾股定理的探究:让学生历经量一量、算一算、想一想的由特殊到一般的数学思想引导好学生课前预习,再以检查预习成果的形式为新知的探究作好铺垫。2、勾股定理的证明:以学生拼图展示、讲解预习成果的形式完成对定理的证明。3、勾股定理的应用:以课堂练习、学生个性补充和老师适当的个性化追加的形式实现对定理的灵活应用。4、学后反思:以学生小结的形式引导学生从知识、情感两方面实现对本节内容的巩固与升华。说创新点:为了给学生营造一个和谐、民主、平等而高效的数学课堂,我以新课程标准的基本理念和总体目标为指导思想,面向全体学生,选择适当的起点和方法,充分发挥学生的主体地位与教师主导作用相统一的原则。教学中注重学生的动手操作能力的培养,化繁为简,化抽象为直观。例如我以展示预习成果为主线,以学生动手操作、讲解等直观方式代替老师画图、剪图、讲评费时费力的方式,既让每个学生都能积极的参与进来,培养学生的语言表达能力、