《高等数学教学课件汇编》d8-5隐函数求导方法.ppt
-
资源ID:72953937
资源大小:867.50KB
全文页数:20页
- 资源格式: PPT
下载积分:11.9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
《高等数学教学课件汇编》d8-5隐函数求导方法.ppt
第八章 第五节机动 目录 上页 下页 返回 结束 一、一个方程所确定的隐函数一、一个方程所确定的隐函数 及其导数及其导数 二、方程组所确定的隐函数组二、方程组所确定的隐函数组 及其导数及其导数隐函数的求导方法 本节讨论:1)方程在什么条件下才能确定隐函数.2)在方程能确定隐函数时,研究其连续性、可微性 及求导方法问题.机动 目录 上页 下页 返回 结束 一、一个方程所确定的隐函数及其导数一、一个方程所确定的隐函数及其导数定理定理1.1.设函数则方程单值连续函数 y=f(x),并有连续(隐函数求导公式)定理证明从略,仅就求导公式推导如下:具有连续的偏导数;的某邻域内某邻域内可唯一确定一个在点的某一邻域内满足满足条件机动 目录 上页 下页 返回 结束 导数两边对 x 求导在的某邻域内则机动 目录 上页 下页 返回 结束 例例1.验证方程在点(0,0)某邻域可确定一个单值可导隐函数解解:令连续,由 定理1 可知,导的隐函数 则在 x=0 的某邻域内方程存在单值可且机动 目录 上页 下页 返回 结束 并求机动 目录 上页 下页 返回 结束 两边对 x 求导两边再对 x 求导令 x=0,注意此时导数的另一求法导数的另一求法 利用隐函数求导机动 目录 上页 下页 返回 结束 定理定理2.若函数 的某邻域内具有连续偏导数连续偏导数,则方程在点并有连续偏导数定一个单值连续函数 z=f(x,y),定理证明从略,仅就求导公式推导如下:满足 在点满足:某一邻域内可唯一确机动 目录 上页 下页 返回 结束 两边对 x 求偏导同样可得则机动 目录 上页 下页 返回 结束 例例2.设解法解法1 利用隐函数求导机动 目录 上页 下页 返回 结束 再对 x 求导解法解法2 利用公式设则两边对 x 求偏导机动 目录 上页 下页 返回 结束 例例3.设F(x,y)具有连续偏导数,已知方程机动 目录 上页 下页 返回 结束 二、方程组所确定的隐函数组及其导数二、方程组所确定的隐函数组及其导数隐函数存在定理还可以推广到方程组的情形.由 F、G 的偏导数组成的行列式称为F、G 的雅可比雅可比(Jacobi)行列式.以两个方程确定两个隐函数的情况为例,即雅可比 目录 上页 下页 返回 结束 定理定理3.3.的某一邻域内具有连续偏设函数则方程组的单值连续函数单值连续函数且有偏导数公式:在点的某一邻域内可唯一唯一确定一组满足条件满足:导数;机动 目录 上页 下页 返回 结束 定理证明略.仅推导偏导数公式如下:机动 目录 上页 下页 返回 结束 有隐函数组则两边对 x 求导得设方程组在点P 的某邻域内公式 目录 上页 下页 返回 结束 故得系数行列式同样可得机动 目录 上页 下页 返回 结束 例例4.设解解:方程组两边对 x 求导,并移项得求练习练习:求机动 目录 上页 下页 返回 结束 答案答案:由题设故有内容小结内容小结1.隐函数(组)存在定理2.隐函数(组)求导方法熟练掌握利用复合函数求导法则直接计算;代公式思考与练习思考与练习设求机动 目录 上页 下页 返回 结束 提示提示:机动 目录 上页 下页 返回 结束