欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    现代雷达系统分析与设计(陈伯孝)第8章.pptx

    • 资源ID:72976355       资源大小:2.90MB        全文页数:190页
    • 资源格式: PPTX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    现代雷达系统分析与设计(陈伯孝)第8章.pptx

    雷达的基本任务是发现目标并对目标进行定位。通常目标的回波信号中总是混杂着噪声和干扰,而噪声和各种干扰信号均具有随机特性,在这种条件下发现目标的问题属于信号检测的范畴,而测定目标坐标则是参数估计问题。信号检测是参数估计的前提,只有发现了目标才能对目标进行定位。因此,信号检测是雷达最基本的任务。信号检测就是对接收机输出的由信号、噪声和其它干扰组成的混合信号经过信号处理以后,以规定的检测概率(通常比较高)输出所希望得到的有用信号,而噪声和其它干扰则以低概率产生随机虚警(通常以一定的虚警概率为条件)。第1页/共190页检测概率和虚警概率取决于噪声和其它干扰信号,以及伴随这些信号的目标信号的幅度分布(概率密度函数),因此,检测是一个统计过程。采用何种方式来处理信号和噪声(或包括干扰)的混合波形,以便最有效地利用信号所载信息使检测性能最好,这是理论上需要解决的问题。信号检测理论就是判断信号是否存在的方法及其最佳处理方式。本章主要介绍基本检测过程、雷达信号的最佳检测、脉冲积累的检测性能、二进制积累的检测性能、自动检测等方面的知识,推导不同情况下的检测概率的计算公式。由于二进制积累是在检测的基础上进行的,因此,将二进制积累也放在本章介绍。自动检测主要介绍均值类CFAR方面的内容。第2页/共190页检测系统的任务是对输入x(t)进行必要的处理,然后根据一定的准则来判断输入是否有信号,如图8.1所示。输入到检测系统的信号x(t)有两种可能:信号加噪声,即x(t)s(t)n(t);只有噪声,即x(t)n(t)。由于输入噪声和干扰的随机性,信号检测问题要用数理统计的方法来解决。8.1 基本检测过程第3页/共190页图8.1 雷达信号检测模型第4页/共190页雷达的检测过程可以用门限检测来描述,即将接收机的接收信号经信号处理后的输出信号(本书中称为检测前输入信号)与某个门限电平进行比较。如果检测前输入信号的包络超过了某一预置门限,就认为有目标(信号)。雷达信号检测属于二元检测问题,即要么有目标,要么无目标。当接收机只有噪声输入时,为H0假设;当输入包括信号加噪声时,为H1假设,即:(8.1.1)第5页/共190页图8.2 观察空间的划分第6页/共190页对于二元检测来说,有两种正确的判决和两种错误的判决如表8.1所示。这些判决的概率可以用条件概率表示为(8.1.2a)(8.1.2b)(8.1.2c)(8.1.2d)式(8.1.2d)中P(H0|H1)表示在H1假设下做出无信号的判决(即H0为真)的概率,其它条件概率类似。第7页/共190页表8.1 二元检测判决概率第8页/共190页假设H1出现的先验概率为P(H1),H0出现的先验概率为P(H0),且P(H1)1P(H0)。假设噪声n(t)服从零均值、方差为的高斯分布,则观测信号x(t)的两种条件概率密度函数为(8.1.3a)(8.1.3b)第9页/共190页则虚警概率Pfa和漏警概率Pm分别为(8.1.4a)(8.1.4b)假定判决门限为VT,根据式(8.1.3a)和(8.1.3b)的条件概率密度函数可得:(8.1.5)(8.1.6)第10页/共190页检测概率和虚警概率可分别用图8.3(a)、(b)中的阴影部分面积来表示。第11页/共190页图8.3 检测概率和虚警概率第12页/共190页判决门限VT的确定与采用的最佳准则有关。在信号检测中常用的最佳准则有:贝叶斯准则;最小错误概率准则;最大后验概率准则(要求后验概率P(H1|x)和P(H0|x)已知);极小极大化准则;奈曼皮尔逊(Neyman-Pearson)准则。第13页/共190页在雷达信号检测中,因预先并不知道目标出现的概率,也很难确定一次漏警所造成的损失,所以,通常采用的准则是在一定的虚警概率下,使漏警概率最小或使正确检测概率达到最大,这就是奈曼皮尔逊准则。在数学上,奈曼皮尔逊准则可表示为:在PfaP(H1|H0)(常数)的条件下,使检测概率PdP(H1|H1)达到最大,或使漏警概率PmP(H0|H1)1Pd达到最小。这是一个有约束条件的数值问题,其解的必要条件是应使式(8.1.7)的目标函数达到极小。(8.1.7)第14页/共190页式中:0为拉格朗日乘子,是待定系数;Pe表示两种错误概率的加权和,称为总错误概率。在约束条件下使Pm1Pd最小等效于使Pe最小,这样就将有约束的极值问题转化为无约束的极值问题,便于求解。为了提高判决的质量,减小噪声干扰随机性的影响,一般需要对接收信号进行多次观测或多次取样。例如,对于N次独立取样,输入信号为N维空间,接收样本矢量表示为第15页/共190页当输入为x(t)s(t)n(t)时,其N个取样点的联合概率分布密度函数为p(x1,x2,xN|H1);而当输入为x(t)n(t)时,其联合概率分布密度函数为p(x1,x2,xN|H0)。根据观察空间D的划分,虚警概率和检测概率可分别表示为(8.1.8)(8.1.9)第16页/共190页代入式(8.1.7),得到总错误概率与联合概率分布密度函数的关系为(8.1.10)第17页/共190页观察空间的划分应保证总错误概率Pe最小,即后面的积分值最大。因此,满足(8.1.11)的所有点均划在D1范围,判为有信号;而将其它的点,即满足(8.1.12)的所有点划在D0范围,判为无信号。第18页/共190页式(8.1.11)和式(8.1.12)可改写为(8.1.13)定义有信号时的概率密度函数和只有噪声时的概率密度函数之比为似然比(x),即(8.1.14)第19页/共190页 似然比(x)是取决于输入x(t)的一个随机变量,它表征输入x(t)是信号加噪声还是只有噪声的似然程度。当似然比足够大时,有充分理由判断确有信号存在。式(8.1.10)中拉格朗日乘子0的值应根据约束条件Pfa来确定。信号的最佳检测系统(最佳接收系统)是由一个似然比计算器和一个门限判决器组成,如图8.4所示。这里所说的最佳准则是总错误概率最小,或者说在固定虚警概率条件下使检测概率最大。可以证明,在不同的最佳准则下,上述检测系统都是最佳的,差别仅在于门限的取值不同。第20页/共190页图8.4 雷达信号的检测系统第21页/共190页8.2.1 噪声环境下的信号检测对雷达接收信号进行正交双路匹配滤波、平方律检波和判决的简化框图如图8.5所示。假设雷达接收机的输入信号由目标回波信号s(t)和均值为零、方差为2n的加性高斯白噪声n(t)组成,且噪声与信号不相关。8.2 雷达信号的最佳检测第22页/共190页图8.5 平方律检波器和门限判决器的简化框图第23页/共190页匹配滤波器的输出信号可以表示为(8.2.1)其中,02f0是雷达的工作频率;r(t)是v(t)的包络;的相位;下标I、Q对应的vI(t)和vQ(t)分别称为同相分量和正交分量。第24页/共190页匹配滤波器的输出是复随机变量,其组成或者只有噪声,或者是噪声加上目标回波信号(幅度为A的正弦波)。对应第一种情况的同相和正交分量为(8.2.2)对应第二种情况的同相和正交分量为(8.2.3)第25页/共190页其中,噪声的同相和正交分量nI(t)和nQ(t)是不相关的零均值低通高斯噪声,具有相同的方差这两个随机变量nI和nQ的联合概率密度函数(pdf)为(8.2.4)随机变量r(t)和j j(t)的联合pdf为 (8.2.5)第26页/共190页其中,J为Jacobian(即导数矩阵的行列式),(8.2.6)在这种情况下,Jr(t)(8.2.7)将式(8.2.4)和式(8.2.7)代入式(8.2.5)中,合并后得到(8.2.8)第27页/共190页 将式(8.2.8)对j j积分得到包络r的pdf为(8.2.9)式中I0为修正的第一类零阶贝塞尔函数,(8.2.10)第28页/共190页这里式(8.2.9)是Rice概率密度函数。如果A0(只有噪声),式(8.2.9)变成Rayleigh概率密度函数,(8.2.11)当很大时,式(8.2.9)变成均值为A、方差为的Gaussian概率密度函数,(8.2.12)第29页/共190页 对式(8.2.8)中的r积分得到随机变量j j的pdf(8.2.13)其中(8.2.14)第30页/共190页为标准正态分布函数,在大多数数学手册中可以查表得到。当只有噪声(A0)时,f(j j)简化为0,2区间的均匀分布的pdf。第31页/共190页8.2.2 虚警概率虚警概率Pfa定义为当雷达接收信号中只有噪声时,信号的包络r(t)超过门限电压VT的概率。根据式(8.2.11)的概率密度函数,虚警概率的计算为(8.2.15)(8.2.16)(8.2.17)第32页/共190页其中,称为标准门限,即噪声功率归一化门限电压。式(8.2.16)反映了门限电压VT与虚警概率Pfa之间的关系。图8.6给出了虚警概率与归一化检测门限的关系曲线。从图中可以明显看出,Pfa对门限值的微小变化非常敏感。第33页/共190页图8.6 虚警概率与归一化检测门限的关系第34页/共190页虚警时间Tfa是指发生虚警的平均时间,它与虚警概率的关系为(8.2.18)其中,tint表示雷达的积累时间,或包络检波器的输出超过门限电压的平均时间。因为雷达的工作带宽B是tint的逆,所以将式(8.2.15)代入式(8.2.18),可以将Tfa写为(8.2.19)第35页/共190页使虚警时间最小意味着增加门限值,导致雷达的最大检测距离会减小。因此,Tfa的选取依赖于雷达的工作模式。表征虚警的大小有时还用虚警次数nfa,它表示在平均虚警时间内所有可能出现的虚警总数。Fehlner将虚警次数定义为(8.2.20)Marcum将虚警次数定义为Pfa的倒数,即nfa1/Pfa。第36页/共190页8.2.3 检测概率检测概率Pd是在噪声加信号的情况下信号的包络r(t)超过门限电压VT的概率,即目标被检测到的概率。根据式(8.2.9)的概率密度函数,计算检测概率Pd为(8.2.21)如果假设雷达信号是幅度为A的正弦波形Acos(2f0t),那么它的功率为A2/2。将单个脉冲的信噪比代入式(8.2.21)得第37页/共190页(8.2.22)(8.2.23)第38页/共190页Q称为Marcum Q函数。Marcum Q函数的积分非常复杂,Parl开发了一个简单的算法来计算这个积分。(8.2.24)(8.2.25)(8.2.26)第39页/共190页对于p3,式(8.2.25)的递归是连续计算的,直到n10p。该算法的准确度随p值的增大而提高。其计算过程见MATLAB函数“marcumsq.m”。图8.7给出了在不同虚警概率Pfa情况下,检测概率Pd与单个脉冲SNR之间的关系曲线。在实际中通常根据给定的Pfa和Pd,由此曲线得到单个脉冲SNR的门限。第40页/共190页图8.7 检测概率与单个脉冲信噪比的关系曲线第41页/共190页为了避免式(8.2.22)中的数值积分,简化Pd的计算,North提出了一个非常准确的近似计算公式(8.2.27)其中,余误差函数为(8.2.28)第42页/共190页由式(8.2.27)可得出对于给定的Pfa和Pd所要求的单个脉冲最小信噪比SNR,即 (8.2.29)当Pfa较小、Pd相对较大,从而门限也较大时,DiFranco和Rubin也给出了近似式(8.2.30)第43页/共190页其中,(x)由式(8.2.14)给出。如图8.8所示,式(8.2.23)、式(8.2.27)和式(8.2.30)这三种近似式计算的精度都很高,在Pfa102且信噪比较小时,误差最大,但同样的Pd所要求的SNR的差异仍小于0.5 dB,误差在可接受的范围内,所以,在大多数情况下可以使用后两种近似方法计算Pd,以避免繁琐的数值积分计算。第44页/共190页图8.8 检测概率Pd的三种近似方法第45页/共190页根据式(8.2.29)的计算,表8.2给出了在一定Pfa条件下达到一定检测概率Pd所要求的单个脉冲的信噪比。例如,若Pd0.9和Pfa106,则要求最小单个脉冲信噪比SNR13.2 dB。实际中雷达是在每个波位的多个脉冲进行积累后再做检测,则相当于积累后进行检测判决之前所要求达到的SNR。第46页/共190页表8.2 不同检测性能所要求的单个脉冲信噪比(dB)第47页/共190页8.2.4 信号幅度起伏的检测性能在先前的讨论中,一直假设目标信号的幅度在检测过程中是固定的,而实际的目标信号幅度是起伏的,由于幅度并非匹配参数,这种幅度起伏并不会影响匹配滤波的效果。但是它影响了检测概率,因为检测概率需要对未知信号幅度进行积分运算。为了分析这一影响,假设目标信号幅度A的起伏服从瑞利分布:(8.2.31)第48页/共190页(8.2.32)其中,为信号功率,为噪声功率。从而得到检测概率Pd为(8.2.33)第49页/共190页 将式(8.2.17)代入式(8.2.33)可得(8.2.34)其中,第50页/共190页上式给出了Pd与Pfa和SNR之间的直接函数关系。图8.9给出了幅度起伏服从瑞利分布时信号的检测性能,将图8.9与图8.7作比较后可以发现,当信号振幅有所起伏时,在大的Pd区域,这种起伏将会引起检测损失;而在小的检测概率区域,情况恰好相反,有起伏信号比无起伏信号的检测概率要大,但是雷达通常不工作于这么小的检测概率区域。第51页/共190页图8.9 幅度起伏服从瑞利分布时信号的最佳检测特性第52页/共190页由于单个脉冲的能量有限,雷达通常不采用单个接收脉冲来进行检测判决。在判决之前,先对一个波位的多个脉冲进行相干积累或非相干积累。相干积累是在包络检波之前进行,利用接收脉冲之间的相位关系,可以获得信号幅度的叠加。8.3 脉冲积累的检测性能第53页/共190页从理论上讲,相干积累的信噪比等于单个脉冲的信噪比乘以脉冲串中的脉冲数M,即相干积累的信噪比改善可以达到M倍,但实际中受到目标回波起伏的影响而使信噪比改善小于M倍。非相干积累是在包络检波以后进行,就不需要信号间有严格的相位关系,只保留下幅度信息,从而存在积累损失。相干积累和非相干积累的实现方法在第5章已经介绍过,这里主要介绍其检测性能。第54页/共190页8.3.1 相干积累的检测性能在相干积累中,如果使用理想的积累器(100%效率),那么积累M个脉冲将获得相同因子的SNR改善。为了证明相干积累时的SNR改善情况,考虑雷达回波信号包含信号和加性噪声的情况。第m个脉冲的回波为(8.3.1)第55页/共190页其中,s(t)是感兴趣的雷达回波(假定目标回波不起伏),nm(t)是与s(t)不相关的加性白噪声。M个脉冲进行相干积累处理得到的信号为(8.3.2)z(t)中的总噪声功率等于其方差,更准确的表示为(8.3.3)第56页/共190页其中,E表示数值期望。由于M个周期的噪声相互独立,有(8.3.4)其中,是单个脉冲噪声功率,且每个周期噪声的功率相等。当ml时,ml0;当ml时,ml1。观察式(8.3.2)和式(8.3.4)可以看出,相干积累后期望信号的功率没有改变,而噪声功率随因子1 M而减小。因此,相干积累后SNR的改善为M倍。第57页/共190页将给定检测概率和虚警概率所要求的单个脉冲SNR(检测因子)表示为D0(1)。同样,将进行M个脉冲积累时产生相同的检测概率所要求的SNR(检测因子)表示为D0(M),则(8.3.5)因此,在相同检测性能条件下,采用相干积累提高了SNR,这就可以减小对单个脉冲的SNR的要求,对同样作用距离来说,就可以减小雷达发射的峰值功率。第58页/共190页8.3.2 非相干积累的检测性能非相干积累是在包络检波后进行,又称为视频积累器。非相干积累的效率比相干积累要低。事实上,非相干积累的增益总是小于脉冲的个数。这个积累损耗称为检波后损耗或平方律检波器损耗。Marcum和Swerling指出该项损耗值在M和M之间。DiFranco和Rubin给出了该项损耗LNCI的近似值为(8.3.6)注意,当M变得很大时,积累损耗接近M。第59页/共190页使用平方律检波器和非相干积累的雷达接收机的框图如图8.10所示。在实际中,平方律检波器经常用作最佳接收机的近似。第60页/共190页图8.10 平方律检波器和非相干积累的简化框图第61页/共190页根据式(8.2.9)信号r(t)的概率密度函数,定义(8.3.7)(8.3.8)则变量ym的概率密度函数为(8.3.9)第62页/共190页 对第m个脉冲的平方律检波器的输出正比于其输入的平方,对式(8.3.7)中的变量进行代换,定义一个新的变量,即平方律检波器输出端的变量为(8.3.10)则变量xm的概率密度函数为(8.3.11)第63页/共190页对M个脉冲的非相干积累的实现可表示为(8.3.12)由于各个随机变量xm是相互独立的,变量z的概率密度函数为(8.3.13)第64页/共190页其中IM1是M1阶修正贝塞尔函数,算子表示卷积。因此,对f(z)求从门限值到无穷大的积分可得检测概率,而设Rp为0并对f(z)求从门限值到无穷大的积分可得虚警概率。第65页/共190页8.3.3 相干积累与非相干积累的性能比较M个等幅脉冲在包络检波后进行理想积累时,信噪比的改善达不到M倍,这是因为包络检波的非线性作用,信号加噪声通过检波器时,还将增加信号与噪声的相互作用项从而影响输出端的信噪比。特别是当检波器输入端的信噪比较低时,在检波器输出端信噪比的损失更大。虽然视频积累的效果不如相干积累,但在许多雷达中仍然采用,主要是因为:(1)非相干积累的工程实现(检波和积累)比较简单;(2)对雷达的收发系统没有严格的相参性要求;第66页/共190页(3)对大多数运动目标来讲,其回波的起伏将明显破坏相邻回波信号的相位相参性,因此就是在雷达收发系统相参性很好的条件下,起伏回波也难以获得理想的相干积累。事实上,对快起伏的目标回波来讲,视频积累还将获得更好的检测效果。(4)当脉间参差变T(抗杂波MTI处理)时,在一个波位的脉冲不能进行相干积累,而只能进行非相干积累。另外,将相干积累和非相干积累的检测系统进行比较,正如以上所述,相干积累是在检波前进行积累,而非相干积累是在检波后进行积累,如图8.11所示。第67页/共190页图8.11 相干积累与非相干积累的比较第68页/共190页从实用角度来看,发射和处理非相干脉冲串要比相干脉冲串容易得多,但相干脉冲串的检测能力较非相干脉冲串强。为了在总体上权衡其利弊,应具体地比较相干积累和非相干积累在各种条件下检测能力的差别。相干积累和非相干积累的概率密度函数如图8.12所示。检波后积累的噪声的平均值xM,即噪声随着脉冲积累数M的增大而增大。噪声的平均值偏离原点越远,在门限相同的条件下将会产生更多的虚警。第69页/共190页积累噪声分布的方差值也为M,即积累脉冲数增加后,噪声分布的离散性加大,这导致虚警也增大了。当有信号时,积累后概率密度函数的平均值为xME/N0,与只有噪声时相比,概率密度函数的平均值相差E/N0。而在相干积累时,有信号和只有噪声时相比,概率密度函数的平均值偏移了2E/N0。再加上非相干积累时,概率密度函数的方差随着M的增大而加大,这也是不利于检测的因素。因此,非相干积累的效果要较相干积累差,且积累数M越大,积累的效果差别就越明显。第70页/共190页图8.12 两种积累的概率密度函数示意图第71页/共190页8.3.4 积累损失相对于脉冲串的相干积累,非相干积累有一确定的损失。在相干积累中,脉冲串积累是相干匹配滤波过程的一部分,而且与单个脉冲相比,对于一个给定的检测水平,所需的最小SNR也会因为积累数M而降低。这是由于匹配滤波器输出的SNR只取决于总信号能量,而与其能量在时域上如何分配无关。第72页/共190页当中频滤波器与信号匹配时,信噪比最大:(SN)mfE1N0(对于单个脉冲);(SN)mfEN0(对于整个观测信号匹配的滤波器)。对于其它滤波器,还存在关于脉冲频谱的失配损耗Lm;对于相干积累,还存在关于脉冲串包络频谱的进一步损耗Lmf。这时中频输出SNR为SNE1N0Lm(对于单个脉冲);SNEN0LmLmf(对于整个观测信号)。失配损耗增加了为满足包络检波器的SNR要求所需的接收机输入端的能量比值。然而,在很多情况下,有一低通滤波器置于包络检波器和门限之间,以减少门限处的噪声方差。第73页/共190页在一定Pfa下要达到要求的Pd,M个脉冲进行非相干积累后的SNR记为(SNR)NCI,单个脉冲的信噪比为(SNR)1。积累改善因子I(M)定义为(8.3.14)Peebles给出了一个积累改善因子精确到0.8 dB的近似计算公式(8.3.15)第74页/共190页 积累损失是用来衡量非相干积累相对于相干积累的检测性能的。对于给定的检测性能,积累损失L可以表示为非相干积累时单个脉冲所需SNR与相干积累单个脉冲所需SNR的比值,即(8.3.16)第75页/共190页其中,2EN0表示为达到某特定的检测概率在门限判决前观测波形所需的峰值信噪比,因此(2EN0)M表示M个脉冲相干积累时单个脉冲所需的信噪比,而非相干积累为了达到同样的检测效果,单个脉冲所需的信噪比表示为2E1N0。对于给定的检测性能,非相干积累总比相干积累需要更高的SNR。因此,当采用非相干积累时,在一定Pfa下要达到给定的Pd时对应的SNR为(8.3.17)第76页/共190页图8.13分别给出了积累改善因子I(M)和积累损失LNCI与非相干积累脉冲数M之间的关系。从图中可以看出,M越大,非相干积累的效果就越明显,积累损失也越大。第77页/共190页图8.13 I(M)及LNCI与M之间的关系第78页/共190页 例8-1 某L波段雷达具有下列指标:工作频率f01.5 GHz,工作带宽B2 MHz,噪声系数F8 dB,系统损失L4 dB,虚警时间Tfa12 min,最大探测距离R12 km,所要求的最小SNR为13.85 dB,天线增益G5000,目标RCS的1m2。(a)确定PRF fr、脉冲宽度、峰值功率Pt、虚警概率Pfa、对应的Pd以及最小可检测信号电平Smin;(b)当非相干积累10个脉冲时,为了获得相同的性能,峰值功率可以减小多少?第79页/共190页(c)如果雷达在单个脉冲模式下工作在更短的距离上,则当距离缩短为9 km时,求新的检测概率。解(a)假设最大探测距离对应不模糊距离,即RuR,据此可以计算PRF为脉冲宽度与带宽成反比,即第80页/共190页虚警概率为 然后,使用MATLAB函数“marcumsq.m”计算检测概率:语法为 marcumsq(alpha,beta)其中,第81页/共190页因此,检测概率为Pdmarcumsq(6.9665,6.4944)0.6626使用雷达方程可以计算雷达峰值功率,更准确的表示为 最小可检测信号为第82页/共190页 (b)当10个脉冲非相干积累时,根据本书提供的MATLAB函数“improv_fac.m”计算对应的改善因子,可以使用如下语法,即Iimprov_fac(10,1e11,0.5),结果为I(10)67.78dB。因此,保持检测概率相同(积累和不积累),SNR的改善因子大约为6dB(13.857.78)。10个脉冲非相干积累的积累损失可以根据式(8.3.16)计算 所以,当10个脉冲非相干积累时,单个脉冲SNR为第83页/共190页这时,需要发射的峰值功率减小为 (c)当探测距离缩短到9 km,其SNR改善为同样使用MATLAB函数“marcumsq.m”计算检测概率,其中,第84页/共190页因此,当距离缩短为9 km时,新的检测概率为第85页/共190页8.3.5 起伏脉冲串的检测性能对于M1的情况,Marcum定义的虚警概率为(8.3.18)对于非起伏目标,单个脉冲的检测概率由式(8.2.22)给出。当积累脉冲数M1时,使用Gram-Charlier级数计算检测概率,此时检测概率为(8.3.19)第86页/共190页其中,常数C3、C4和C6是Gram-Charlier级数的系数,变量V为(8.3.21)图8.14给出了M1、10时检测概率相对于SNR的曲线。为了获得同样的检测概率,10个脉冲非相干积累比单个脉冲需要更低的SNR,这样有利于降低发射的峰值功率。第87页/共190页图8.14 检测概率相对于SNR的曲线(Pfa109)第88页/共190页实际中由于目标与雷达视线间有相对运动,诸如目标的倾斜、翻滚、偏航等,都将使有效反射面积发生变化,从而使雷达回波的振幅成为一串随时间变化的随机量。因此,雷达工作时经常会碰到起伏的脉冲串,在第3章介绍了四种起伏目标的斯威林(Swerling)模型,非起伏目标情况也被广泛称为Swerling 0或Swerling 型目标,表8.3列出了四种起伏目标的检测性能。第89页/共190页表8.3 四种Swerling起伏目标的检测性能第90页/共190页其中,sSNR,1(x,M)是不完全Gamma函数,(8.3.22)图8.15(a)(b)分别显示了Pfa106和Pfa109情况下Swerling型目标积累脉冲数M1、10、50、100时,检测概率与所要求的单个脉冲SNR的关系曲线。由此可以看出,在积累不同脉冲数时达到其检测性能所要求的单个脉冲的SNR。第91页/共190页图8.15 Swerling型目标的检测概率与SNR的关系曲线第92页/共190页图8.16 Swerling型目标的检测概率与SNR的关系曲线(Pfa109)第93页/共190页图8.17 Swerling型目标的检测概率与SNR的关系曲线(Pfa109)第94页/共190页图8.16、图8.17、图8.18分别显示了Swerling、型目标在Pfa109情况下积累脉冲数M1、10、50、100时,检测概率与所要求的单个脉冲SNR的关系曲线。在虚警概率Pfa109和脉冲积累数M10的条件下,图8.19中比较了五种类型目标的检测性能。从图中可以看出,当检测概率Pd比较大时,四种起伏目标相对不起伏目标来讲,需要更大的信噪比。例如,当检测概率Pd0.95时,对于Swerling型目标来说,每个脉冲信噪比需要6.8 dB,对于Swerling型目标而言,每个脉冲所需信噪比为18.5 dB。第95页/共190页图8.18 Swerling型目标的检测概率与SNR的关系曲线(Pfa109)第96页/共190页因此,若在估计雷达作用距离时不考虑目标起伏的影响,则预测的作用距离和实际能达到的作用距离相差甚远。当Pd0.35时,慢起伏目标(Swerling型和Swerling型)时所需信噪比大于快起伏(Swerling型和Swerling型)所需信噪比。如图8.20所示,慢起伏目标的回波在同一扫描期是完全相关的,如果第一个脉冲振幅小于检测门限,则相继脉冲也不会超过门限值,所以要发现目标只有提高信噪比。在快起伏情况下由于脉冲间回波起伏不相关,相继脉冲的振幅会有较大变化,第一个脉冲不超过门限值,相继脉冲有可能超过门限值而被检测到。事实上,只要脉冲数足够多,快起伏情况下的检测性能是被平均的,它的检测性能接近于不起伏目标的情况。第97页/共190页图8.19 五种类型目标信号的检测性能第98页/共190页图8.20 四种起伏性目标的起伏特性第99页/共190页在第5章已提到采用抽头迟延线的方法来实现M个视频脉冲的积累。将接收机送出的视频信号按距离(时间)取样并进行幅度量化,变成数字信号。8.4 二进制积累第100页/共190页将M个重复周期的量化信号存储起来,然后对各距离单元信号依次进行加权求和。但这样做要求很大的存储量和运算量,这在数字技术应用的早期很难做到。一种简单方法是先对每个脉冲进行门限检测(一次检测)将得到的“0”或“1”存储起来,再对相同距离单元的M个脉冲的“0”或“1”进行最佳积累,这就是二进制积累器。随着数字器件的发展,二进制积累器的优点已经不是很明显,但它仍然应用于一些场合。第101页/共190页8.4.1 二进制积累器的工作原理如图8.21(a)所示波形,一般的模数变换器都是先作时间分割(取样保持),然后再作模数转换。由于二进制检测的幅度量化特别简单,它只是按门限变成“0/1”信号,所以先进行幅度量化,再进行时间取样,这样设备要简单一些。在二进制积累器中,接收机检波器的输出首先和预先设置的第一门限相比较,如果输出超过第一门限,量化器输出一个脉冲,记为“1”,否则不输出脉冲,记为“0”。按距离单元将超过第一门限的量化脉冲送到计数器中进行计数,如果在M个重复周期中有K个以上的量化脉冲加到计数器,则判决为有信号,这个 K/M值常称为第二门限。第102页/共190页二进制积累器也称为双门限检测器,二进制积累器的组成框图如图8.21(b)。第103页/共190页图8.21 二进制积累器的波形图和框图第104页/共190页实际上,如果把双门限检测中的检波后电压变为“0/1”信号的过程代之以多位数的模数转换,则“0/1”信号的计数相加就相应变为多位数信号的积累。再把第二门限作适当调整,就成为前面所说的检波后积累(数字信号)和门限检测,所以双门限检测可看作是最佳检测的简化和特例。第105页/共190页8.4.2 二进制积累器的检测性能二进制积累器的检测性能和第一、第二门限值的选取均有关系。例如第一门限过高,弱信号很难检测到而产生较大漏警;第一门限过低则虚警率较大,第二门限的选择亦有相类似的影响。当第一门限值r0选定后,就可求出在单次扫掠条件下,每一距离单元的检测概率和虚警概率。在高斯噪声背景下,经过检波器后,有信号和只有噪声时的振幅分布分别服从广义瑞利分布和瑞利分布,即(8.4.1)第106页/共190页这时单次检测概率和虚警概率分别为Pd1r0p(x/H1)dx1r00p(x/H1)dxPfa1r0p(x/H0)dx(8.4.3)有了单次的检测概率和虚警概率,就可以计算出二进制积累器的检测性能。已知在M个统计独立的取样值中有K个取样值超过确定门限的概率P(K)符合二项式分布律,即P(K)C KMPK(1P)MK(8.4.4)第107页/共190页(8.4.2)其中P为单次取样值超过门限的概率,1P为单次取样不超过门限的概率,而二项式系数为M个取值中取K的组合数。二项式分布的平均值为KMP,方差为第108页/共190页如果第二门限值选为 KM,则当超过第一门限的脉冲数大于或等于K值时,均判为有信号。这样超过第二门限判为有信号的总概率应为(8.4.5)第109页/共190页当P用Pfa1代入时,即得到二进制积累后的虚警概率(8.4.6)而检测概率则以单次检测概率Pd1代入式(8.4.5)后得到(8.4.7)第110页/共190页 由式(8.4.6)和式(8.4.7)可以看出,二进制检测器的检测性能(用检测概率和虚警概率表示)与第一门限和第二门限均有关。在单门限检测系统中,门限电平可以直接由虚警概率唯一地决定,而在双门限积累器中,情况就比较复杂,虚警概率Pfa是两级门限r0和 K/M的函数。第111页/共190页8.4.3 几种常用的二进制检测器雷达天线波束扫描通常分为连续扫描和步进扫描两大类。相控阵雷达中常用步进扫描,即天线波束指向某一方向发射一定数量的脉冲,然后又指向另一方向,再发射一定数量的脉冲。而机械扫描天线一般都是连续扫描工作的。天线扫描方式不同将影响所采用二进制积累器的形式,下面将分别进行说明。1.指向检测器指向检测器适用于步进扫描。天线在某一波束指向时,发射一串M个脉冲,相应地就有M个回波被接收。上一小节研究的二进制检测原理可以直接用于步进扫描的情况,并称之为指向检测器。第112页/共190页这时可将天线波束在某一指向中各次扫掠的回波通过第一门限的比较后得到“0”或“1”信号,按不同的距离单元把它们分别储存或累加,然后按第二门限作判决处理。这种指向检测器是二进制检测器中较为简单而又具有代表性的一种。图8.22所示为M7时的累计式指向检测器原理图。它的工作过程如下:当天线波束移到一个新的指向时,首先应将MOS移位寄存器清“0”,量化信号经三位计数器再送入MOS移位寄存器,而在某一距离单元的量化信号送入计数器前,先用MOS移位寄存器的输出(即该距离单元前几次扫掠中信号为“1”的累计数)对计数器置数,如果新的输入为“1”,则计数器加1,并将结果再存入移位寄存器。第113页/共190页这时的移位寄存器存储的就是这次和前若干次扫掠中信号为“1”的累计数,由于M7,要用三位二进制数码表示,所以计数器是三位的,移位寄存器也要三个,每个储存一位二进制码。当最后一次扫掠的回波到来时,计数器依次输出的是各距离单元M次扫掠累计的“1”(这里M7)。这时,图8.22中的开关S2应接通,使总的累计数与门限K作比较,得到二次检测的输出。同时,在最后一次扫掠期间,应使三个MOS移位寄存器清“0”,为波束移向新的指向作准备。第114页/共190页图8.22 累计式指向检测器第115页/共190页由上面的工作过程可以看出,指向检测器的工作是和天线步进扫描同步的,而信号经过指向检测器处理后,每M次扫掠才有一次输出。例如,对某距离单元来说,原来M次扫掠时每次都有信号(代表同一目标)输出,现在只在最后一次才有积累输出,这是合理的。目标的角度位置可以根据出现目标回波时天线波束的指向角来确定,或根据差波束通道的数据更精确地测定。第116页/共190页2.滑窗检测器当天线作连续扫描时,波束扫过目标期间将获得一串回波脉冲,这和步进扫描时收到一串回波的情况很相似。其差别在于:这一串回波通常是按天线方向图的形状产生幅度调制而不是等幅的;目标信号开始出现的角度位置不能预知,因而无法像指向检测器那样分批处理。这就必须采用其它形式的检测器,滑窗检测器就是其中的一种。回波信号经第一门限检测后变为“0”或“1”信号,如果天线波束扫过目标时收到的回波数为M,则相应的滑窗检测器由M1个迟延单元组成,每个单元的迟延时间为重复周期Tr。第117页/共190页“0”或“1”信号送到滑窗检测器进行M次扫掠的信号求和运算,由于是将M次“0”或“1”信号求和而不是正常的量化数字信号求和,这种滑窗设备比较简单。图8.23画出了滑窗检测器的组成和相应M7时的波形图。与指向检测器不同,滑窗检测器是每次扫掠均有输出。图8.23(b)是某一距离单元的输入信号和输出信号的波形:(1)目标信号较强时,该目标所在距离单元通过第一门限后的输出,也就是滑窗检测器的输入都为“1”;(2)目标信号较弱时,一次门限检测后目标信号丢失了部分脉冲。二次门限的判决方法仍和指向检测器相同,即设立一个门限K,滑窗检测器输出的M次扫掠脉冲之和,若能达到或超过该门限K即认为有目标信号。第118页/共190页图8.23 二进制滑窗检测器及其波形第119页/共190页在指向检测器中,M个回波脉冲经累加后只有一个脉冲输出,由该脉冲的大小来判决有无目标。而在滑窗检测器中,由于每次扫掠均有输出,就可能在波束扫过目标期间,多次扫掠都有可能超过门限,但所反映的却是同一目标。因此在作出是否有目标存在的判决时,以这些输出中的最大值为准较好。滑窗检测器的检测性能和指向检测器稍有差别。若以输出最大值为检测准则时,其检测概率的计算与指向检测器相同。但对于虚警概率的计算,考虑到如果连续两次以上扫掠发生虚警时,最后只能算是一次虚警,因此检测器虚警概率的计算需作出相应的修改。第120页/共190页天线连续扫描时,当检测到有目标存在后,还要对目标所在角度进行估值。通常有两种方法:一种是以滑窗检测器输出为最大时的角度为准;另一种是分别记下输出超过第二门限瞬时(称为目标起始)及回到第二门限之下瞬时(称为目标终了)的角度,然后取其平均值。从图8.23可以看出,检测器的输出滞后于输入,上述两种角度估值法所得结果均有滞后偏差,其差等于(M1)1/2,其中1为一个扫掠周期内天线波束扫描的角度,这种固定偏差可通过校准而消除。第121页/共190页8.4.4 二进制积累的优缺点二进制检测的设备简单,而且检波输出经第一门限后变为“0/1”信号可以降低

    注意事项

    本文(现代雷达系统分析与设计(陈伯孝)第8章.pptx)为本站会员(莉***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开