工学一阶电路和二阶电路课件.pptx
2.2.一阶和二阶电路的零输入响应、零状态响应一阶和二阶电路的零输入响应、零状态响应和全响应的概念及求解;和全响应的概念及求解;l 重点重点3.3.一阶和二阶电路的阶跃响应概念及求解。一阶和二阶电路的阶跃响应概念及求解。1.1.动态电路方程的建立及初始条件的确定;动态电路方程的建立及初始条件的确定;返 回第1页/共143页含有动态元件电容和电感的电路称动态电路。含有动态元件电容和电感的电路称动态电路。1 1.动态电路动态电路 7.1 动态电路的方程及其初始条件 当动态电路状态发生改变时(换路)需要当动态电路状态发生改变时(换路)需要经历一个变化过程才能达到新的稳定状态。这经历一个变化过程才能达到新的稳定状态。这个变化过程称为电路的过渡过程。个变化过程称为电路的过渡过程。下 页上 页特点返 回第2页/共143页例例0ti过渡期为零电阻电路电阻电路下 页上 页+-usR1R2(t=0)i返 回第3页/共143页i=0 ,uC=Usi=0 ,uC=0 k接通电源后很长时间接通电源后很长时间,电容充电完毕,电路,电容充电完毕,电路达到新的稳定状态:达到新的稳定状态:k未动作前未动作前,电路处于稳定状态:,电路处于稳定状态:电容电路电容电路下 页上 页k+uCUsRCi(t=0)+-(t)+uCUsRCi+-前一个稳定状态前一个稳定状态过渡状态过渡状态新的稳定状态新的稳定状态t1USuct0?i有一过渡期返 回第4页/共143页uL=0,i=Us/Ri=0 ,uL=0 k接通电源后很长时间接通电源后很长时间,电路达到新的稳定,电路达到新的稳定状态,电感视为短路:状态,电感视为短路:k未动作前未动作前,电路处于稳定状态:,电路处于稳定状态:电感电路电感电路下 页上 页k+uLUsRi(t=0)+-L(t)+uLUsRi+-前一个稳定状态前一个稳定状态过渡状态过渡状态新的稳定状态新的稳定状态t1US/Rit0?uL有一过渡期返 回第5页/共143页下 页上 页(t)+uLUsRi+-k未动作前未动作前,电路处于稳定状态:,电路处于稳定状态:uL=0,i=Us/Rk断开瞬间断开瞬间i=0 ,uL=工程实际中在切断电容或电感电路时工程实际中在切断电容或电感电路时会出现过电压和过电流现象。会出现过电压和过电流现象。注意k(t)+uLUsRi+-返 回第6页/共143页过渡过程产生的原因过渡过程产生的原因 电路内部含有储能元件电路内部含有储能元件 L、C,电路在换路时,电路在换路时能量发生变化,而能量的储存和释放都需要一定的能量发生变化,而能量的储存和释放都需要一定的时间来完成。时间来完成。电路结构、状态发生变化电路结构、状态发生变化换路换路支路接入或断开支路接入或断开电路参数变化电路参数变化下 页上 页返 回第7页/共143页应用应用KVL和电容的和电容的VCR得:得:若以电流为变量:若以电流为变量:2 2.动态电路的方程动态电路的方程下 页上 页(t 0)+uCUsRCi+-例例RC电路电路返 回第8页/共143页应用应用KVL和电感的和电感的VCR得得:若以电感电压为变量:若以电感电压为变量:下 页上 页(t 0)+uLUsRi+-RL电路电路返 回第9页/共143页有源 电阻 电路 一个动态元件一阶电路下 页上 页结论 含有一个动态元件电容或电感的线性电含有一个动态元件电容或电感的线性电路,其电路方程为一阶线性常微分方程,称路,其电路方程为一阶线性常微分方程,称一阶电路。一阶电路。返 回第10页/共143页二阶电路下 页上 页(t 0)+uLUsRi+-CuCRLC电路电路应用应用KVL和元件的和元件的VCR得得:含有二个动态元件的线性电路,其电路方程含有二个动态元件的线性电路,其电路方程为二阶线性常微分方程,称二阶电路。为二阶线性常微分方程,称二阶电路。返 回第11页/共143页一阶电路一阶电路一阶电路中只有一个动态元件一阶电路中只有一个动态元件,描述描述电路的方程是一阶线性微分方程。电路的方程是一阶线性微分方程。描述动态电路的电路方程为微分方程;描述动态电路的电路方程为微分方程;动态电路方程的阶数通常等于电路中动态元件的个数。二阶电路二阶电路二阶电路中有二个动态元件二阶电路中有二个动态元件,描述描述电路的方程是二阶线性微分方程。电路的方程是二阶线性微分方程。下 页上 页结论返 回第12页/共143页高阶电路高阶电路电路中有多个动态元件,描述电路中有多个动态元件,描述电路的方程是高阶微分方程。电路的方程是高阶微分方程。动态电路的分析方法动态电路的分析方法根据根据KVL、KCL和和VCR建立微分方程;建立微分方程;下 页上 页返 回第13页/共143页复频域分析法复频域分析法时域分析法求解微分方程求解微分方程经典法经典法状态变量法状态变量法数值法数值法卷积积分卷积积分拉普拉斯变换法拉普拉斯变换法状态变量法状态变量法付氏变换付氏变换本章采用 工程中高阶微分方程应用计算机辅助分析求解。工程中高阶微分方程应用计算机辅助分析求解。下 页上 页返 回第14页/共143页 t=0与与t=0的概念的概念认为换路在认为换路在t=0时刻进行时刻进行0 换路前一瞬间换路前一瞬间 0 换路后一瞬间换路后一瞬间3.3.电路的初始条件电路的初始条件初始条件为初始条件为 t=0时时u,i 及其各阶导数及其各阶导数的值。的值。下 页上 页注意0f(t)00t返 回第15页/共143页图示为电容放电电路,电容原先带有电压图示为电容放电电路,电容原先带有电压Uo,求求开关闭合后电容电压随时间的变化。开关闭合后电容电压随时间的变化。例例解解特征根方程:特征根方程:通解:通解:代入初始条件得:代入初始条件得:在动态电路分析中,初始条件是得在动态电路分析中,初始条件是得到确定解答的必需条件。到确定解答的必需条件。下 页上 页明确R+CiuC(t=0)返 回第16页/共143页t=0+时刻时刻iucC+-电容的初始条件电容的初始条件0下 页上 页当i()为有限值时返 回第17页/共143页q(0+)=q(0)uC(0+)=uC(0)换路瞬间,若电容电流保持为有限值,换路瞬间,若电容电流保持为有限值,则电容电压(电荷)换路前后保持不变。则电容电压(电荷)换路前后保持不变。q=C uC电荷守恒下 页上 页结论返 回第18页/共143页电感的初始条件电感的初始条件t=0+时刻时刻0下 页上 页当u为有限值时iLuL+-返 回第19页/共143页L(0)=L(0)iL(0)=iL(0)磁链守恒 换路瞬间,若电感电压保持为有限值,换路瞬间,若电感电压保持为有限值,则电感电流(磁链)换路前后保持不变。则电感电流(磁链)换路前后保持不变。下 页上 页结论返 回第20页/共143页L(0+)=L(0)iL(0+)=iL(0)qc(0+)=qc(0)uC(0+)=uC(0)换路定律电容电流和电感电压为有限值是换路定电容电流和电感电压为有限值是换路定律成立的条件。律成立的条件。换路瞬间,若电感电压保持换路瞬间,若电感电压保持为有限值,则电感电流(磁链)为有限值,则电感电流(磁链)换路前后保持不变。换路前后保持不变。换路瞬间,若电容电流保持换路瞬间,若电容电流保持为有限值,则电容电压(电荷)为有限值,则电容电压(电荷)换路前后保持不变。换路前后保持不变。换路定律反映了能量不能跃变。换路定律反映了能量不能跃变。下 页上 页注意返 回第21页/共143页电路初始值的确定电路初始值的确定(2)由换路定律由换路定律 uC(0+)=uC(0)=8V(1)由由0电路求电路求 uC(0)uC(0)=8V(3)由由0+等效电路求等效电路求 iC(0+)iC(0)=0 iC(0+)例例1求求 iC(0+)电容开路下 页上 页+-10ViiC+uC-S10k40k+-10V+uC-10k40k+8V-0+等效电路等效电路+-10ViiC10k电容用电压源替代注意返 回第22页/共143页iL(0+)=iL(0)=2A例例 2t=0时闭合开关时闭合开关k,求求 uL(0+)先求先求应用换路定律应用换路定律:电感用电流源替代解解电感短路下 页上 页iL+uL-L10VS14+-iL10V14+-由由0+等效电路求等效电路求 uL(0+)2A+uL-10V14+-注意返 回第23页/共143页求初始值的步骤求初始值的步骤:1.1.由换路前电路(稳定状态)求由换路前电路(稳定状态)求uC(0)和和iL(0);2.2.由换路定律得由换路定律得 uC(0+)和和 iL(0+)。3.3.画画0+等效电路。等效电路。4.4.由由0+电路求所需各变量的电路求所需各变量的0+值。值。b.b.电容(电感)用电压源(电流源)替代。电容(电感)用电压源(电流源)替代。a.a.换路后的电路换路后的电路(取(取0+时刻值,方向与原假定的电容电压、电时刻值,方向与原假定的电容电压、电感电流方向相同)。感电流方向相同)。下 页上 页小结返 回第24页/共143页iL(0+)=iL(0)=iSuC(0+)=uC(0)=RiSuL(0+)=-RiS求求 iC(0+),uL(0+)例例3解解由由0电路得电路得:下 页上 页由由0+电路得电路得:S(t=0)+uLiLC+uCLRiSiCRiS0电路电路uL+iCRiSRiS+返 回第25页/共143页例4求求k闭合瞬间各支路电流和电感电压闭合瞬间各支路电流和电感电压解解下 页上 页由由0电路得电路得:由由0+电路得电路得:iL+uL-LS2+-48V32CiL2+-48V32+uC返 回12A24V+-48V32+-iiC+-uL第26页/共143页求求k闭合瞬间流过它的电流值闭合瞬间流过它的电流值解解确定确定0值值给出给出0等效电路等效电路下 页上 页例5iL+20V-10+uC1010iL+20V-LS10+uC1010C返 回1A10V+uLiC+20V-10+1010第27页/共143页7.2 7.2 一阶电路的零输入响应一阶电路的零输入响应换路后外加激励为零,仅由动换路后外加激励为零,仅由动态元件初始储能产生的电压和态元件初始储能产生的电压和电流。电流。1.1.RC电路的零输入响应电路的零输入响应已知已知 uC(0)=U0 uR=Ri零输入响应零输入响应下 页上 页iS(t=0)+uRC+uCR返 回第28页/共143页特征根特征根特征方程特征方程RCp+1=0则则下 页上 页代入初始值代入初始值 uC(0+)=uC(0)=U0A=U0iS(t=0)+uRC+uCR返 回第29页/共143页下 页上 页或或返 回第30页/共143页tU0uC0I0ti0令令 =RC ,称称为一阶电路的时间常数为一阶电路的时间常数电压、电流是随时间按同一指数规律衰减的函数;电压、电流是随时间按同一指数规律衰减的函数;连续函数跃变响应与初始状态成线性关系,其衰减快慢与响应与初始状态成线性关系,其衰减快慢与RC有关有关;下 页上 页表明返 回第31页/共143页时间常数 的大小反映了电路过渡过程时间的长短 =RC 大大过渡过程时间长过渡过程时间长 小小过渡过程时间短过渡过程时间短电压初值一定:电压初值一定:R 大大(C一定一定)i=u/R 放电电流小放电电流小放电时间长放电时间长U0tuc0 小 大C 大大(R一定一定)W=Cu2/2 储能大储能大物理含义物理含义下 页上 页返 回第32页/共143页a.:电容电压衰减到原来电压电容电压衰减到原来电压36.8%所需的时间。所需的时间。工程上认为工程上认为,经过经过 35,过渡过程结束。过渡过程结束。U0 0.368U0 0.135U0 0.05U0 0.007U0 t0 2 3 5U0 U0 e-1 U0 e-2 U0 e-3 U0 e-5 下 页上 页注意返 回第33页/共143页 t2 t1 t1时刻曲线的斜率等于时刻曲线的斜率等于U0tuc0t1t2次切距的长度下 页上 页返 回b.时间常数时间常数 的几何意义:的几何意义:第34页/共143页能量关系电容不断释放能量被电阻吸收电容不断释放能量被电阻吸收,直到全部消耗完毕直到全部消耗完毕.设设 uC(0+)=U0电容放出能量:电容放出能量:电阻吸收(消耗)能量:电阻吸收(消耗)能量:下 页上 页uCR+C返 回第35页/共143页例1图示电路中的电容原充有图示电路中的电容原充有24V电压,求电压,求k闭合后,闭合后,电容电压和各支路电流随时间变化的规律。电容电压和各支路电流随时间变化的规律。解解这是一个求一阶这是一个求一阶RC 零输入响应问题,有:零输入响应问题,有:+uC45Fi1t 0等效电路等效电路下 页上 页i3S3+uC265Fi2i1返 回第36页/共143页+uC45Fi1分流得:分流得:下 页上 页i3S3+uC265Fi2i1返 回第37页/共143页下 页上 页例2求求:(1)图示电路图示电路k闭合后各元件的电压和电流随闭合后各元件的电压和电流随时间变化的规律,时间变化的规律,(2)电容的初始储能和最终时电容的初始储能和最终时刻的储能及电阻的耗能。刻的储能及电阻的耗能。解解这是一个求一阶这是一个求一阶RC 零输入响应问题,有:零输入响应问题,有:u(0+)=u(0)=20V返 回u1(0-)=4VuSC1=5F-+-+iC2=20Fu2(0-)=24V250k-第38页/共143页下 页上 页uk4F+-i20V250k返 回第39页/共143页下 页上 页初始储能初始储能最终储能最终储能电阻耗能电阻耗能返 回第40页/共143页2.2.RL电路的零输入响应电路的零输入响应特征方程特征方程 Lp+R=0特征根特征根 代入初始值代入初始值A=iL(0+)=I0t 0下 页上 页iLS(t=0)USL+uLRR1+-iL+uLR返 回第41页/共143页tI0iL0连续函数跃变电压、电流是随时间按同一指数规律衰减的函数;电压、电流是随时间按同一指数规律衰减的函数;下 页上 页表明-RI0uLt0iL+uLR返 回第42页/共143页响应与初始状态成线性关系,其衰减快慢与响应与初始状态成线性关系,其衰减快慢与L/R有关有关;下 页上 页令令 称为一阶称为一阶RL电路时间常数电路时间常数 =L/R时间常数 的大小反映了电路过渡过程时间的长短L大大 W=LiL2/2 起始能量大起始能量大R小小 P=Ri2 放电过程消耗能量小放电过程消耗能量小放电慢,放电慢,大大 大大过渡过程时间长过渡过程时间长 小小过渡过程时间短过渡过程时间短物理含义物理含义电流初值iL(0)一定:返 回第43页/共143页能量关系电感不断释放能量被电阻吸收电感不断释放能量被电阻吸收,直到全部消耗完毕。直到全部消耗完毕。设设 iL(0+)=I0电感放出能量:电感放出能量:电阻吸收(消耗)能量:电阻吸收(消耗)能量:下 页上 页iL+uLR返 回第44页/共143页iL(0+)=iL(0)=1 AuV(0+)=10000V 造成造成V损坏。损坏。例例1t=0时时,打开开关打开开关S,求求uv。电压表量程:。电压表量程:50V解解下 页上 页iLS(t=0)+uVL=4HR=10VRV10k10V返 回第45页/共143页例例2t=0时时,开关开关S由由12,求求电感电压和电流及电感电压和电流及开关两端电压开关两端电压u12。解解下 页上 页i+uL66Ht 0iLS(t=0)+24V6H3446+uL212返 回第46页/共143页下 页上 页i+uL66Ht 0iLS(t=0)+24V6H3446+uL212返 回第47页/共143页一阶电路的零输入响应是由储能元件的初值引一阶电路的零输入响应是由储能元件的初值引起的响应起的响应,都是由初始值衰减为零的指数衰减都是由初始值衰减为零的指数衰减函数。函数。iL(0+)=iL(0)uC(0+)=uC(0)RC电路电路RL电路电路下 页上 页小结返 回第48页/共143页一阶电路的零输入响应和初始值成正比,一阶电路的零输入响应和初始值成正比,称为零输入线性。称为零输入线性。衰减快慢取决于时间常数衰减快慢取决于时间常数 同一电路中所有响应具有相同的时间常数。同一电路中所有响应具有相同的时间常数。下 页上 页小结 =R C =L/RR为与动态元件相连的一端口电路的等效电阻。RC电路RL电路返 回第49页/共143页动态元件初始能量为零,由动态元件初始能量为零,由t 0电电路中外加激励作用所产生的响应。路中外加激励作用所产生的响应。方程:方程:7.3 一阶电路的零状态响应 解答形式为:解答形式为:1.1.RC电路的零状态响应电路的零状态响应零状态响应零状态响应非齐次方程特解齐次方程通解下 页上 页iS(t=0)US+uRC+uCRuC(0)=0+非齐次线性常微分方程返 回第50页/共143页与输入激励的变化规律有关,为电路的稳态解与输入激励的变化规律有关,为电路的稳态解变化规律由电路参数和结构决定变化规律由电路参数和结构决定的通解的通解通解(自由分量,暂态分量)通解(自由分量,暂态分量)特解(强制分量)特解(强制分量)的特解的特解下 页上 页返 回第51页/共143页全解全解uC(0+)=A+US=0 A=US由初始条件由初始条件 uC(0+)=0 定积分常数定积分常数 A下 页上 页从以上式子可以得出:从以上式子可以得出:返 回第52页/共143页-USuCuC“USti0tuC0电压、电流是随时间按同一指数规律变化的函电压、电流是随时间按同一指数规律变化的函数;电容电压由两部分构成:数;电容电压由两部分构成:连续函数跃变稳态分量(强制分量)稳态分量(强制分量)暂态分量(自由分量)暂态分量(自由分量)下 页上 页表明+返 回第53页/共143页响应变化的快慢,由时间常数响应变化的快慢,由时间常数 RC决定;决定;大,大,充电慢,充电慢,小充电就快。小充电就快。响应与外加激励成线性关系;响应与外加激励成线性关系;能量关系能量关系电容储存能量:电容储存能量:电源提供能量:电源提供能量:电阻消耗能量:电阻消耗能量:电源提供的能量一半消耗在电阻上,一半电源提供的能量一半消耗在电阻上,一半转换成电场能量储存在电容中。转换成电场能量储存在电容中。下 页上 页表明RC+-US返 回第54页/共143页例例t=0时时,开关开关S闭合,已知闭合,已知 uC(0)=0,求求(1)电容电容电压和电流电压和电流,(2)uC80V时的充电时间时的充电时间t。解解(1)(1)这是一个这是一个RC电路零电路零状态响应问题,有:状态响应问题,有:(2)(2)设经过设经过t1秒秒,uC80V下 页上 页50010F+-100VS+uCi返 回第55页/共143页2.2.RL电路的零状态响应电路的零状态响应已知iL(0)=0,电路方程为:tiL0下 页上 页iLS(t=0)US+uRL+uLR+返 回第56页/共143页uLUSt0下 页上 页iLS(t=0)US+uRL+uLR+返 回第57页/共143页例例1t=0时时,开关开关S打开,求打开,求t 0后后iL、uL的变化规律。的变化规律。解解这是这是RL电路零状态响应问题,先化简电路,有:电路零状态响应问题,先化简电路,有:t 0下 页上 页返 回iLS+uL2HR8010A200300iL+uL2H10AReq第58页/共143页例例2t=0开关开关k打开,求打开,求t 0后后iL、uL及电流源的电压。及电流源的电压。解解 这是这是RL电路零状态响应问题,先化简电路,有:电路零状态响应问题,先化简电路,有:下 页上 页iL+uL2HUoReq+t 0返 回iLK+uL2H102A105+u第59页/共143页7.4 一阶电路的全响应电路的初始状态不为零,同时又有外电路的初始状态不为零,同时又有外加激励源作用时电路中产生的响应。加激励源作用时电路中产生的响应。以以RC电路为例,电路微分方程:电路为例,电路微分方程:1.1.全响应全响应全响应全响应下 页上 页iS(t=0)US+uRC+uCR解答为:解答为:uC(t)=uC+uC特解特解 uC =US通解通解=RC返 回第60页/共143页uC(0)=U0uC(0+)=A+US=U0 A=U0-US由初始值定由初始值定A下 页上 页强制分量(稳态解)自由分量(暂态解)返 回第61页/共143页2.2.全响应的两种分解方式全响应的两种分解方式uC-USU0暂态解uCUS稳态解U0uc全解tuc0全响应全响应 =强制分量强制分量(稳态解稳态解)+自由分量自由分量(暂态解暂态解)着眼于电路的两种工作状态着眼于电路的两种工作状态物理概念清晰物理概念清晰下 页上 页返 回第62页/共143页全响应全响应 =零状态响应零状态响应 +零输入响应零输入响应着眼于因果关系着眼于因果关系便于叠加计算便于叠加计算下 页上 页零输入响应零状态响应S(t=0)USC+RuC(0)=U0+S(t=0)USC+RuC(0)=U0S(t=0)USC+RuC(0)=0返 回第63页/共143页零状态响应零输入响应tuc0US零状态响应全响应零输入响应U0下 页上 页返 回第64页/共143页例例1 t=0 时时 ,开关开关k打开,求打开,求t 0后的后的iL、uL。解解 这是这是RL电路全响应问题,电路全响应问题,有:有:零输入响应:零输入响应:零状态响应:零状态响应:全响应:全响应:下 页上 页iLS(t=0)+24V0.6H4+uL8返 回第65页/共143页或求出稳态分量:或求出稳态分量:全响应:全响应:代入初值有:代入初值有:62AA=4例例2t=0时时 ,开关开关K闭合闭合,求求t 0后的后的iC、uC及电及电流源两端的电压。流源两端的电压。解解这是这是RC电路全响电路全响应问题,有:应问题,有:下 页上 页稳态分量:稳态分量:返 回+10V1A1+uC1+u1第66页/共143页下 页上 页全响应:全响应:返 回+10V1A1+uC1+u1第67页/共143页3.3.三要素法分析一阶电路三要素法分析一阶电路一阶电路的数学模型是一阶线性微分方程:一阶电路的数学模型是一阶线性微分方程:令令 t=0+其解答一般形式为:其解答一般形式为:下 页上 页特解返 回第68页/共143页 分析一阶电路问题转为求解电路的三分析一阶电路问题转为求解电路的三个要素的问题。个要素的问题。用用0+等效电路求解等效电路求解用用t的稳态的稳态电路求电路求解解下 页上 页注意返 回第69页/共143页例例1已知:已知:t=0 时合开关,求换路后的时合开关,求换路后的uC(t)解解tuc2(V)0.6670下 页上 页1A213F+-uC返 回第70页/共143页例例2t=0时时 ,开关闭合,求开关闭合,求t 0后的后的iL、i1、i2解解三要素为:三要素为:下 页上 页iL+20V0.5H55+10Vi2i1三要素公式三要素公式返 回第71页/共143页三要素为:三要素为:下 页上 页0等效电路等效电路返 回+20V2A55+10Vi2i1第72页/共143页例例3已知:已知:t=0时开关由时开关由12,求换路后的求换路后的uC(t)解解三要素为:三要素为:下 页上 页4+4i12i1u+2A410.1F+uC+4i12i18V+12返 回第73页/共143页下 页上 页例例4已知:已知:t=0时开关闭合,求换路后的电流时开关闭合,求换路后的电流i(t)。+1H0.25F52S10Vi解解三要素为:三要素为:返 回第74页/共143页下 页上 页+1H0.25F52S10Vi返 回第75页/共143页已知:电感无初始储能已知:电感无初始储能t=0 时合时合S1,t=0.2s时合时合S2,求两次换路后的电感电流,求两次换路后的电感电流i(t)。0 t 0.2s下 页上 页i10V+S1(t=0)S2(t=0.2s)32-返 回第77页/共143页(0|P1|下 页上 页0电容电压返 回第83页/共143页t=0+ic=0 ,t=ic=0ic0 t=tm 时ic 最大tmic下 页上 页tU0uc0电容和电感电流返 回第84页/共143页U0uctm2tmuLic0 t 0,t tm i 减小减小,uL 0t=2 tm时时 uL 最大最大下 页上 页RLC+-t0电感电压返 回第85页/共143页iC=i 为极值时,即为极值时,即 uL=0 时的时的 tm 计算如下计算如下:由由 duL/dt 可确定可确定 uL 为极小时的为极小时的 t.下 页上 页返 回第86页/共143页能量转换关系能量转换关系0 t tm uC减小减小,i 减小减小.下 页上 页RLC+-RLC+-tU0uCtm2tmuLiC0返 回第87页/共143页uc 的解答形式:经常写为:经常写为:下 页上 页共轭复根返 回第88页/共143页0下 页上 页,的关系返 回第89页/共143页t=0 时时 uc=U0uC=0:t=-,2-.n-t-2-20U0uC下 页上 页返 回第90页/共143页t-2-20U0uC iC uL=0:t=,+,2+.n+ic=0:t=0,2 .n,为为 uc极值点,极值点,ic 的极值点为的极值点为 uL 零点零点。下 页上 页返 回第91页/共143页能量转换关系:能量转换关系:0 t t -t 0+电路的微分方程(b)求通解(c)求特解(d)全响应=强制分量+自由分量上 页返 回上 页第109页/共143页7.7 一阶电路和二阶电路的阶跃响应1.1.单位阶跃函数单位阶跃函数l 定义定义t (t)01l 单位阶跃函数的延迟t(t-t0)t001下 页上 页返 回第110页/共143页t=0 合闸合闸 i(t)=Is在电路中模拟开关的动作在电路中模拟开关的动作t=0 合闸合闸 u(t)=El 单位阶跃函数的作用下 页上 页SUSu(t)u(t)返 回Isku(t)第111页/共143页起始一个函数起始一个函数下 页上 页tf(t)0t0返 回第112页/共143页l 用单位阶跃函数表示复杂的信号例例 1(t)tf(t)101t0tf(t)0t0-(t-t0)例例 21t1 f(t)0243下 页上 页返 回第113页/共143页例例 41t1 f(t)0例例 31t1 f(t)0243下 页上 页返 回第114页/共143页例例 5t1 02已知电压已知电压u(t)的波形如图,的波形如图,试画出下列电压的波形。试画出下列电压的波形。t1 u(t)022t1 011t 1 01 t1021下 页上 页返 回第115页/共143页和和的区别的区别2.2.一阶电路的阶跃响应一阶电路的阶跃响应激励为单位阶跃函数时,电路激励为单位阶跃函数时,电路中产生的零状态响应。中产生的零状态响应。阶跃响应阶跃响应下 页上 页iC +uCRuC(0)=0注意返 回第116页/共143页t01it0i下 页上 页tuC10返 回第117页/共143页tiC0激励在激励在 t=t0 时加入,时加入,则响应从则响应从t=t0开始。开始。t-t0(t-t0)-t不要写为:不要写为:下 页上 页iC(t-t0)C +uCRt0注意返 回第118页/共143页求图示电路中电流求图示电路中电流 iC(t)例例下 页上 页10k10kus+-ic100FuC(0)=00.510t(s)us(V)05k0.5us+-ic100FuC(0)=0等效等效返 回第119页/共143页应用叠加定理应用叠加定理下 页上 页5k+-ic100F5k+-ic100F5k+-ic100F阶跃响应为:阶跃响应为:返 回第120页/共143页由齐次性和叠加性得实际响应为:由齐次性和叠加性得实际响应为:下 页上 页5k+-ic100F5k+-ic100F返 回第121页/共143页下 页上 页分段表示为:分段表示为:返 回第122页/共143页分段表示为:分段表示为:t(s)iC(mA)01-0.6320.5波形波形0.368下 页上 页返 回第123页/共143页2.2.二阶电路的阶跃响应二阶电路的阶跃响应下 页上 页对电路应用KCL列结点电流方程有已知图示电路中已知图示电路中uC(0-)=0,iL(0-)=0,求单位阶跃求单位阶跃响应响应 iL(t)例例解解返 回iS0.25H0.22FiRiLiC0.5iC第124页/共143页下 页上 页代入已知参数并整理得:这是一个关于的二阶线性非齐次方程,其解为特解特征方程通解解得特征根返 回第125页/共143页下 页上 页代初始条件阶跃响应电路的动态过程是过阻尼性质的。返 回第126页/共143页7.8 一阶电路和二阶电路的冲激响应1.1.单位冲激函数单位冲激函数l 定义定义t(t)10单位脉冲函数的极限/21/tp(t)-/2下 页上 页返 回第127页/共143页l 单位冲激函数的延迟t(t-t0)t00(1)l 单位冲激函数的性质单位冲激函数的性质冲激函数对时间的积分等于阶跃函数冲激函数对时间的积分等于阶跃函数下 页上 页返 回第128页/共143页冲激函数的冲激函数的筛分筛分性性 同理同理例例t(t)10f(t)f(0)f(t)在在 t0 处连续处连续f(0)(t)注意下 页上 页返 回第129页/共143页uc不是冲激函数不是冲激函数 ,否则否则KCL不成立不成立分二个时间段考虑冲激响应分二个时间段考虑冲激响应电容充电,方程为电容充电,方程为(1)t 在在 0 0+间间例例12.2.一阶电路的冲激响应一阶电路的冲激响应激励为单位冲激函数时,电路中产激励为单位冲激函数时,电路中产生的零状态响应。生的零状态响应。冲激响应冲激响应求单位冲激电流激励下的RC电路的零状态响应。解解注意下 页上 页返 回uC(0)=0iCR(t)C+-uC第130页/共143页电容中的冲激电流使电容电压发生跃变。电容中的冲激电流使电容电压发生跃变。0结论(2)t 0+为零输入响应(RC放电)iCRC+uC下 页上 页返 回第131页/共143页uCt0iCt10下 页上 页返 回第132页/共143页例例2求单位冲激电压激励下的RL电路的零状态响应。分二个时间段考虑冲激响应分二个时间段考虑冲激响应解解L+-iLR+-uLiL不是冲激函数不是冲激函数 ,否则否则KVL不成立。不成立。注意0下 页上 页返 回(1)t 在在 0 0+间间方程为方程为第133页/共143页电感上的冲激电压使电感电流发生跃变。电感上的冲激电压使电感电流发生跃变。结论(2)t 0+RL放电LiLR+-uL下 页上 页返 回第134页/共143页iLt0uLt10下 页上 页返 回第135页/共143页零状态R(t)3.3.单位阶跃响应和单位冲激响应关系单位阶跃响应和单位冲激响应关系单位阶跃响应单位阶跃响应单位冲激响应单位冲激响应h(t)s(t)单位冲激单位冲激(t)单位阶跃单位阶跃(t)激励响应下 页上 页返 回第136页/共143页先求单位阶跃响应:先求单位阶跃响应:求求:is(t)为单位冲激时电路响应为单位冲激时电路响应uC(t)和和iC(t).例例解解uC(0+)=0 uC()=R =RC iC(0+)=1 iC()=0 再求单位冲激响应再求单位冲激响应,令:令:下 页上 页返 回令令uC(0)=0iCRiS(t)C+-uC第137页/共143页0下 页上 页返 回第138页/共143页uCRt0iC1t0uCt0冲激响应冲激响应阶跃响应阶跃响应iCt10下 页上 页返 回第139页/共143页有限值有限值KVL方程为例例4.4.二阶电路的冲激响应二阶电路的冲激响应RLC+-+-uCiR(t)求单位冲激电压激励下的RLC电路的零状态响应。解解t 在0至0间下 页上 页返 回第140页/共143页下 页上 页t0+为零输入响应为零输入响应返 回第141页/共143页下 页上 页返 回第142页/共143页感谢您的观看。第143页/共143页