欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    数学分析高等数学微积分英语上海交通大学.pptx

    • 资源ID:73022016       资源大小:318.59KB        全文页数:21页
    • 资源格式: PPTX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数学分析高等数学微积分英语上海交通大学.pptx

    The limit comparison testTheorem Suppose that and are series withpositive terms.Suppose Then(i)when c is a finite number and c0,then either both series converge or both diverge.(ii)when c=0,then the convergence of implies the convergence of(iii)when then the divergence of implies thedivergence of第1页/共21页ExampleEx.Determine whether the following series converges.Sol.(1)diverge.choose then(2)diverge.take then(3)converge for p1 and diverge for take then第2页/共21页QuestionEx.Determine whether the series converges or diverges.Sol.第3页/共21页Alternating seriesAn alternating series is a series whose terms are alternatively positive and negative.For example,The n-th term of an alternating series is of the form where is a positive number.第4页/共21页The alternating series testTheorem If the alternating series satisfies(i)for all n (ii)Then the alternating series is convergent.Ex.The alternating harmonic series is convergent.第5页/共21页ExampleEx.Determine whether the following series converges.Sol.(1)converge (2)convergeQuestion.第6页/共21页Absolute convergenceA series is called absolutely convergent if the series of absolute values is convergent.For example,the series is absolutely convergent while the alternating harmonic series is not.A series is called conditionally convergent if it is convergent but not absolutely convergent.Theorem.If a series is absolutely convergent,then it is convergent.第7页/共21页ExampleEx.Determine whether the following series is convergent.Sol.(1)absolutely convergent (2)conditionally convergent 第8页/共21页The ratio testThe ratio test(1)If then is absolutely convergent.(2)If or then diverges.(3)If the ratio test is inconclusive:that is,noconclusion can be drawn about the convergence of第9页/共21页ExampleEx.Test the convergence of the seriesSol.(1)convergent (2)convergent for divergent for第10页/共21页The root testThe root test(1)If then is absolutely convergent.(2)If or then diverges.(3)If the root test is inconclusive.第11页/共21页ExampleEx.Test the convergence of the seriesSol.convergent for divergent for第12页/共21页RearrangementsIf we rearrange the order of the term in a finite sum,then of course the value of the sum remains unchanged.But this is not the case for an infinite series.By a rearrangement of an infinite series we mean a series obtained by simply changing the order of the terms.It turns out that:if is an absolutely convergent series with sum ,then any rearrangement of has the same sum .However,any conditionally convergent series can be rearranged to give a different sum.第13页/共21页Example Ex.Consider the alternating harmonic seriesMultiplying this series by we getorAdding these two series,we obtain第14页/共21页Strategy for testing seriesIf we can see at a glance that then divergenceIf a series is similar to a p-series,such as an algebraic form,or a form containing factorial,then use comparison test.For an alternating series,use alternating series test.第15页/共21页Strategy for testing seriesIf n-th powers appear in the series,use root test.If f decreasing and positive,use integral test.Sol.(1)diverge (2)converge(3)diverge (4)converge第16页/共21页Power seriesA power series is a series of the formwhere x is a variable and are constants called coefficientsof series.For each fixed x,the power series is a usual series.We can test for convergence or divergence.A power series may converge for some values of x and diverge for other values of x.So the sum of the series is a function第17页/共21页Power seriesFor example,the power seriesconverges to whenMore generally,A series of the formis called a power series in(x-a)or a power series centeredat a or a power series about a.第18页/共21页ExampleEx.For what values of x is the power series convergent?Sol.By ratio test,the power series diverges for all and only convergeswhen x=0.第19页/共21页Homework 24Section 11.4:24,31,32,42,46Section 11.5:14,34Section 11.6:5,13,23Section 11.7:7,8,10,15,36第20页/共21页感谢您的观看!第21页/共21页

    注意事项

    本文(数学分析高等数学微积分英语上海交通大学.pptx)为本站会员(莉***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开