欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高考数学一轮复习第十一章计数原理概率随机变量及其分布11-9离散型随机变量的均值与方差正态分布学案理.doc

    • 资源ID:730548       资源大小:198.16KB        全文页数:22页
    • 资源格式: DOC        下载积分:2金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要2金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高考数学一轮复习第十一章计数原理概率随机变量及其分布11-9离散型随机变量的均值与方差正态分布学案理.doc

    - 1 - / 22【2019【2019 最新最新】精选高考数学一轮复习第十一章计数原理概率精选高考数学一轮复习第十一章计数原理概率随机变量及其分布随机变量及其分布 11-911-9 离散型随机变量的均值与方差正态分离散型随机变量的均值与方差正态分布学案理布学案理考纲展示 1.理解取有限个值的离散型随机变量的均值、方差的概念2能计算简单的离散型随机变量的均值、方差,并能解决一些实际问题3利用实际问题的直方图,了解正态密度曲线的特点及曲线所表示的意义考点 1 离散型随机变量的均值与方差若离散型随机变量 X 的分布列为Xx1x2xixnPp1p2pipn(1)均值:称 E(X)_为随机变量 X 的均值或数学期望,它反映了离散型随机变量取值的_(2)D(X)xiE(X)2pi 为随机变量 X 的方差,它刻画了随机变量 X 与其均值 E(X)的平均_程度,其算术平方根为随机变量 X的标准差答案:(1)x1p1x2p2xipixnpn 平均水平 (2)偏离(1)教材习题改编设 XB(n,p),若 D(X)4,E(X)12,则n 的值为_答案:18- 2 - / 22解析:XB(n,p),解得 p,n18.(2)教材习题改编一台机器在一天内发生故障的概率为 0.1.这台机器一周五个工作日不发生故障,可获利 5 万元;发生一次故障仍可获利 2.5 万元;发生两次故障的利润为 0 万元;发生三次或者三次以上的故障要亏损 1 万元则这台机器一周内可能获利的均值是_万元答案:3.764 015解析:设这台机器一周内可能获利 X 万元,则 P(X5)(10.1)50.590 49,P(X2.5)C×0.1×(10.1)40.328 05,P(X0)C×0.12×(10.1)30.072 9,P(X1)1P(X5)P(X2.5)P(X0)0.008 56,所以 X 的分布列为X52.501P0.590 490.328 050.072 90.008 56所以,这台机器一周内可能获利的均值为 5×0.590 492.5×0.328 050×0.072 9(1)×0.008 563.764 015(万元)(3)教材习题改编随机变量 的分布列为101Pabc其中 a,b,c 成等差数列,若 E(),则 D()_.答案:5 9解析:由题意有 abc1,2bac,ac,得a,b,c,- 3 - / 22所以 D()×2×2×2.离散型随机变量的均值与方差:随机变量的取值;对应取值的概率计算签盒中有编号为 1,2,3,4,5,6 的 6 支签,从中任意取 3 支,设 X为这 3 支签的号码之中最大的一个,则 X 的数学期望为_答案:5.25解析:由题意可知,X 可以取 3,4,5,6,P(X3),P(X4),P(X5),P(X6),所以由数学期望的定义可求得E(X)5.25.考情聚焦 离散型随机变量的均值与方差是高中数学的重要内容,也是高考命题的热点,常与排列组合、概率等知识综合考查主要有以下几个命题角度:角度一与超几何分布(或古典概型)有关的均值与方差典题 1 2017·江西吉安高三期中近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重大气污染可引起心悸、呼吸困难等心肺疾病为了解某市心肺疾病是否与性别有关,在某医院随机的对入院的 50 人进行了问卷调查得到了如下的列联表:患心肺疾病不患心肺疾病合计男5女10合计50已知在全部 50 人中随机抽取 1 人,抽到患心肺疾病的人的概率为.(1)请将上面的列联表补充完整;- 4 - / 22(2)是否有 99.5%的把握认为患心肺疾病与性别有关,说明你的理由;(3)已知在患心肺疾病的 10 位女性中,有 3 位又患胃病现在从患心肺疾病的 10 位女性中,选出 3 名进行其他方面的排查,记选出患胃病的女性人数为 ,求 的分布列,数学期望以及方差下面的临界值表供参考:P(K2k)0.100.050.0250.100.0050.001k2.7063.8415.0246.6357.87910.828参考公式 K2,其中 nabcd解 (1)列联表补充如下.患心肺疾病不患心肺疾病合计男20525女101525合计302050(2)因为 K2,所以 K28.333.又 P(K27.879)0.0050.5%.那么,我们有 99.5%的把握认为是否患心肺疾病是与性别有关系的(3) 的所有可能取值:0,1,2,3, 服从超几何分布,其中N10,M3,n3.则 P(k)(k0,1,2,3)所以 P(0);P(1);P(2);P(3).- 5 - / 22则 的分布列为0123P7 2421 407 401 120则 E()0×1×2×3×,D()2×2×2×2×. 的数学期望及方差分别为 E(),D().角度二与事件的相互独立性有关的均值与方差典题 2 某银行规定,一张银行卡若在一天内出现 3 次密码尝试错误,该银行卡将被锁定小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的 6 个密码之一,小王决定从中不重复地随机选择 1 个进行尝试若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为 X,求 X 的分布列和数学期望解 (1)设“当天小王的该银行卡被锁定”为事件 A,则 P(A)××.(2)依题意,得 X 所有可能的取值是 1,2,3.P(X1),P(X2)×,P(X3)××1.则 X 的分布列为X123P1 61 62 3- 6 - / 22所以 E(X)1×2×3×.角度三二项分布的均值与方差典题 3 某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有 4 个红球、6 个白球的甲箱和装有5 个红球、5 个白球的乙箱中,各随机摸出 1 个球,在摸出的 2 个球中,若都是红球,则获一等奖;若只有 1 个红球,则获二等奖;若没有红球,则不获奖(1)求顾客抽奖 1 次能获奖的概率;(2)若某顾客有 3 次抽奖机会,记该顾客在 3 次抽奖中获一等奖的次数为 X,求 X 的分布列和数学期望解 (1)记事件 A1从甲箱中摸出的 1 个球是红球,A2从乙箱中摸出的 1 个球是红球,B1顾客抽奖 1 次获一等奖,B2顾客抽奖 1 次获二等奖,C顾客抽奖 1 次能获奖因为 P(A1),P(A2),所以 P(B1)P(A1A2)P(A1)P(A2)×,P(B2)P(A121A2)P(A12)P(1A2)P(A1)P(2)P(1)P(A2)P(A1)1P(A2)1P(A1)P(A2)××.故所求概率为 P(C)P(B1B2)P(B1)P(B2).- 7 - / 22(2)顾客抽奖 3 次可视为 3 次独立重复试验,由(1)知,顾客抽奖 1 次获一等奖的概率为,所以 XB.于是 P(X0)C03,P(X1)C12,P(X2)C21,P(X3)C30.故 X 的分布列为X0123P64 12548 12512 1251 125X 的数学期望为 E(X)3×.点石成金 求随机变量 X 的均值与方差时,可首先分析 X 是否服从二项分布,如果 XB(n,p),则用公式 E(X)np,D(X)np(1p)求解,可大大减少计算量考点 2 均值与方差的性质及其在决策中的应用1.均值与方差的性质(1)E(aXb)_.(2)D(aXb)_(a,b 为常数)答案:(1)aE(X)b (2)a2D(X)2两点分布与二项分布的均值、方差XX服从两点分布XB(n,p)E(X)_D(X)_答案:p(p 为成功概率) np p(1p) np(1p)典题 4 2017·山东德州模拟十八届三中全会提出以管资本为主加强国有资产监管,改革国有资本授权经营体制.2015 年 1 月 20- 8 - / 22日,中国恒天集团有限公司新能源汽车总部项目签约仪式在天津举行,说明国有企业的市场化改革已经踏上新的破冰之旅恒天集团和绿地集团利用现有闲置资金可选择投资新能源汽车和投资文化地产,以推进混合所有制改革,使国有资源效益最大化投资新能源汽车:投资结果盈利 40%不赔不赚亏损 20%概率1 21 61 3投资文化地产:投资结果盈利 50%不赔不赚亏损 35%概率p1 8q(1)当 p时,求 q 的值;(2)若恒天集团选择投资新能源汽车,绿地集团选择投资文化地产,如果一年后两集团中至少有一个集团盈利的概率大于,求 p 的取值范围;(3)恒天集团利用 10 亿元现有闲置资金进行投资,决定在投资新能源汽车和投资文化地产这两种方案中选择一种,已知 q,那么恒天集团选择哪种投资方案,才能使得一年后盈利金额的均值较大?给出结果并说明理由解 (1)因为投资文化地产后,投资结果只有“盈利 50%” “不赔不赚” “亏损 35%”三种,且三种投资结果相互独立,所以 pq1.又 p,所以 q.(2)记事件 A 为“恒天集团选择投资新能源汽车且盈利” ,事件 B为“绿地集团选择投资文化地产且盈利” ,事件 C 为“一年后两集团- 9 - / 22中至少有一个集团盈利” ,则 CABAB,且 A,B 相互独立由图表可知,P(A),P(B)p,所以 P(C)P(A)P(B)P(AB)×(1p)×p×pp.因为 P(C)p,所以 p.又 pq1,q0,所以 p.所以p.故 p 的取值范围为.(3)假设恒天集团选择投资新能源汽车,且记 X 为恒天集团投资新能源汽车的盈利金额(单位:亿元),则 X 的所有可能取值为4,0,2,所以随机变量 X 的分布列为X402P1 21 61 3E(X)4×0×(2)×.假设恒天集团选择投资文化地产,且记 Y 为恒天集团投资文化地产的盈利金额(单位:亿元),则 Y 的所有可能取值为 5,0,3.5,所以随机变量 Y 的分布列为Y503.5P1 21 83 8E(Y)5×0×(3.5)×.因为,所以 E(X)E(Y)- 10 - / 22故恒天集团选择投资新能源汽车,才能使得一年后盈利金额的均值较大点石成金 随机变量的均值反映了随机变量取值的平均水平,方差反映了随机变量稳定于均值的程度,它们从整体和全局上刻画了随机变量,是生产实际中用于方案取舍的重要理论依据一般先比较均值,若均值相同,再用方差来决定.为回馈顾客,某商场拟通过摸球兑奖的方式对 1 000 位顾客进行奖励,规定:每位顾客从一个装有 4 个标有面值的球的袋中一次性随机摸出 2 个球,球上所标的面值之和为该顾客所获的奖励额(1)若袋中所装的 4 个球中有 1 个所标的面值为 50 元,其余 3 个均为 10 元,求:顾客所获的奖励额为 60 元的概率;顾客所获的奖励额的分布列及均值;(2)商场对奖励总额的预算是 60 000 元,并规定袋中的 4 个球只能由标有面值 10 元和 50 元的两种球组成,或标有面值 20 元和 40 元的两种球组成为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的 4 个球的面值给出一个合适的设计,并说明理由解:(1)设顾客所获的奖励额为 X.依题意,得 P(X60).即顾客所获的奖励额为 60 元的概率为.依题意,得 X 的所有可能取值为 20,60.P(X60),P(X20),故 X 的分布列为X2060- 11 - / 22P1 21 2所以顾客所获的奖励额的均值为E(X)20×60×40(元)(2)根据商场的预算,每个顾客的平均奖励额为 60 元所以,先寻找均值为 60 元的可能方案对于面值由 10 元和 50 元组成的情况,如果选择(10,10,10,50)的方案,因为 60 元是面值之和的最大值,所以均值不可能为 60 元;如果选择(50,50,50,10)的方案,因为 60 元是面值之和的最小值,所以均值也不可能为 60 元,因此可能的方案是(10,10,50,50),记为方案 1.对于面值由 20 元和 40 元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案 1,即方案(10,10,50,50),设顾客所获的奖励额为X1,则 X1 的分布列为X12060100P1 62 31 6X1 的均值为 E(X1)20×60×100×60,X1 的方差为 D(X1)(2060)2×(6060)2×(10060)2×.对于方案 2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则 X2 的分布列为X2406080P1 62 31 6- 12 - / 22X2 的均值为 E(X2)40×60×80×60,X2 的方差为 D(X2)(4060)2×(6060)2×(8060)2×.由于两种方案的奖励额的均值都符合要求,但方案 2 奖励额的方差比方案 1 的小,所以应该选择方案 2.考点 3 正态分布问题1.正态分布的定义及表示如果对于任何实数 a,b(ab),随机变量 X 满足 P(aXb),(x)dx,则称随机变量 X 服从正态分布,记作_答案:XN(,2) 2正态分布的三个常用数据(1)P(_X_)_;(2)P(_X_)_;(3)P(_X_)_.答案:(1) 0.682 6 (2)2 2 0.954 4(3)3 3 0.997 4典题 5 (1)设 XN(1,),YN(2,),这两个正态分布密度曲线如图所示,下列结论中正确的是( )AP(Y2)P(Y1)BP(X2)P(X1)C对任意正数 t,P(Xt)P(Yt)D对任意正数 t,P(Xt)P(Yt)答案 D解析 由图象知,12,12,P(Y2),P(Y1),- 13 - / 22故 P(Y2)P(Y1),故 A 错;因为 12,所以 P(X2)P(X1),故 B 错;对任意正数 t,P(Xt)P(Yt),故 C 错;对任意正数 t,P(Xt)P(Yt)是正确的,故选 D.(2)已知某批零件的长度误差(单位:毫米)服从正态分布 N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )A4.56% B13.59% C27.18% D31.74%答案 B解析 由正态分布的概率公式知,P(30,试卷满分 150 分),统计结果显示数学考试成绩在 70 分到 110 分之间的人数约为总人数的,则此次月考中数学考试成绩不低于 110 分的学生约有_人答案:120解析:N(90,a2),其正态分布曲线关于直线 x90 对称,又成绩在 70 分到 110 分之间的人数约为总人数的,由对称性知成绩在 110 分以上的人数约为总人数的×,此次数学考试成绩不低于 110 分的学生约有×600120(人).方法技巧 1.求离散型随机变量均值、方差的基本方法(1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量 的均值、方差,求 的线性函数ab 的均值、方差和标准差,可直接用 的均值、方差的性质求解;(3)如能分析所给随机变量是服从常用的分布(如两点分布、二项分布等),可直接利用它们的均值、方差公式求解2若 X 服从正态分布,即 XN(,2),要充分利用正态曲线- 15 - / 22的对称性和曲线与 x 轴之间的面积为 1 的性质易错防范 1.在没有准确判断分布列模型之前不能乱套公式2对于应用问题,必须对实际问题进行具体分析,一般要将问题中的随机变量设出来,再进行分析,求出随机变量的分布列,然后按定义计算出随机变量的均值、方差真题演练集训 12016·四川卷同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在 2 次试验中成功次数 X的均值是_答案:3 2解析:由题意知,试验成功的概率 p,故 XB,所以 E(X)2×.22014·新课标全国卷从某企业生产的某种产品中抽取 500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这 500 件产品质量指标值的样本平均数和样本方差 s2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值 Z 服从正态分布N(,2),其中 近似为样本平均数,2 近似为样本方差 s2.利用该正态分布,求 P(187.8<Z<212.2);某用户从该企业购买了 100 件这种产品,记 X 表示这 100 件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用的结果,求 E(X)附:12.2.若 ZN(,2),则 P(<Z<)0.682 - 16 - / 226,P(2<Z<2)0.954 4.解:(1)抽取产品的质量指标值的样本平均数和样本方差 s2 分别为170×0.02180×0.09190×0.22200×0.33210×0.24x220×0.08230×0.02200,s2(30)2×0.02(20)2×0.09(10)2×0.220×0.33102×0.24202×0.08302×0.02150.(2)由(1)知,ZN(200,150),从而 P(187.8<Z<212.2)P(20012.2<Z<20012.2)0.682 6.由知,一件产品的质量指标值位于区间(187.8,212.2)的概率为 0.682 6,依题意知 XB(100,0.682 6),所以 E(X)100×0.682 668.26.32016·新课标全国卷某险种的基本保费为 a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数012345保费0.85aa1.25a1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数012345概率0.300.150.200.200.100.05(1)求一续保人本年度的保费高于基本保费的概率;(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出 60%的概率;(3)求续保人本年度的平均保费与基本保费的比值解:(1)设 A 表示事件:“一续保人本年度的保费高于基本保费” ,- 17 - / 22则事件 A 发生当且仅当一年内出险次数大于 1,故 P(A)0.200.200.10 0.050.55.(2)设 B 表示事件:“一续保人本年度的保费比基本保费高出60%” ,则事件 B 发生当且仅当一年内出险次数大于 3,故 P(B)0.10 0.050.15.又 P(AB) P(B),故 P(B|A).因此所求概率为.(3)记续保人本年度的保费为 X,则 X 的分布列为X0.85aa1.25a1.5a1.75a2aP0.300.150.200.200.100.05E(X)0.85a×0.30a×0.151.25a×0.201.5a×0.201.75a×0.102a×0.051.23a.因此续保人本年度的平均保费与基本保费的比值为 1.23.课外拓展阅读 离散型随机变量的期望问题离散型随机变量的期望常与茎叶图、频率分布直方图、分层抽样、函数、不等式等知识相结合,这就为设计新颖、内在联系密切、思维方法灵活的考题开辟了广阔的空间近年高考中有关离散型随机变量的期望的题目多以解答题形式呈现,一题多问,这样既降低了起点,又分散了难点,能较全面地考查必然与或然思想、处理交汇性问题的能力和运算求解能力,难度多为中等,分值在 12 分左右现一起走进离散型随机变量的期望,欣赏其常见的交汇方式与解题方法一、离散型随机变量的期望与茎叶图的交汇问题典例 1 为备战 2017 年青年跳水世锦赛,我国跳水健儿积极训- 18 - / 22练,在最近举行的一次选拔赛中,甲、乙两名运动员为争夺一个参赛名额进行了七轮激烈的比赛,甲、乙两名选手七轮比赛的得分如图所示,已知甲的平均得分比乙的平均得分少 1.(1)求甲得分的众数与乙得分的极差;(2)若从甲、乙两名运动员不低于 80 且不高于 90 的得分中各任选 1 个,记甲、乙两名运动员得分之差的绝对值为 ,求 的分布列及其期望思路分析 (1)观察茎叶图中甲的数据,判断出现次数最多的数据,即众数;观察茎叶图中乙的数据,找出最高分与最低分,相减可得乙得分的极差;(2)先求 的所有可能取值,然后利用古典概型的概率计算公式,求出 取各个值时的概率,列出其分布列,最后利用期望的定义求出期望值解 (1)由茎叶图可知,甲、乙两名运动员七轮比赛的得分情况如下:甲:78,80m,84,85,84,85,91;乙:79,84,84,86,87,84,91.则乙的平均得分为×(79848486878491)85,所以甲的平均得分为85184,即×78(80m)848584859184,解得 m1.所以甲得分的众数为 84,85,乙得分的极差为 917912.(2)设甲、乙两名运动员的得分分别为 x,y,则 |xy|.由茎叶图可知, 的所有可能取值为 0,1,2,3,5,6.当 0 时,xy84,故 P(0);- 19 - / 22当 1 时,x85,y84 或 86,故 P(1);当 2 时,x84,y86 或 x85,y87,故 P(2);当 3 时,x81,y84 或 x84,y87,故 P(3);当 5 时,x81,y86,故 P(5);当 6 时,x81,y87,故 P(6).所以 的分布列为012356P6 258 254 251 51 251 25 的期望为 E()0×1×2×3×5×6×.突破攻略本题以实际生活为背景,并融入排列、组合、古典概型的概率、随机变量的分布列与期望等知识进行探求,有很强的现实意义与时代气息破解离散型随机变量的期望与茎叶图的交汇题的关键:一是看图说话,即看懂茎叶图,并能适时提取相关的数据;二是会求概率,即利用排列、组合知识,以及古典概型的概率公式求随机变量的概率;三是活用定义,利用随机变量的数学期望的定义进行计算二、离散型随机变量的期望与函数的交汇问题典例 2 某次假期即将到来,喜爱旅游的小陈准备去厦门游玩,初步打算去鼓浪屿、南普陀寺、白城浴场三个景点,每个景点有可能去的概率都是,且是否游览某个景点互不影响,设 表示小陈离开- 20 - / 22厦门时游览的景点数(1)求 的分布列、期望及其方差;(2)记“函数 f(x)x23x1 在区间2,)上单调递增”为事件 A,求事件 A 的概率思路分析 (1)依题设条件可判断 服从二项分布,利用二项分布公式即可求出其分布列、期望及方差;(2)先求出二次函数 f(x)的图象的对称轴方程,利用 f(x)单调性,可求出 的取值范围,即可求出事件 A 的概率解 (1)依题意,得 的所有可能取值分别为 0,1,2,3.因为 B,所以 P(0)C×3,P(1)C×1×2,P(2)C×2×1,P(3)C×3.所以 的分布列为0123P8 274 92 91 27所以 的期望为 E()3×1, 的方差为 D()3××.(2)因为 f(x)212 的图象的对称轴方程为 x,又函数 f(x)x23x1 在2,)上单调递增,所以 2,即 .所以事件 A 的概率 P(A)P( 4 3)P(0)P(1)- 21 - / 22.突破攻略本题以旅游为背景,考查了二项分布的分布列及其期望的探求,将二次函数知识融入其中是本题的“闪光”之处,又以函数的单调性“一剑封喉” ,使呆板、平淡的数学题充满活力和无穷魅力!求解离散型随机变量的期望与函数交汇题的“两步曲”:一是活用公式,如果能够断定随机变量 X 服从二项分布 B(n,p),则其期望与方差可直接利用公式 E(X)np,D(X)np(1p)求得;二是分拆事件,会对随机事件进行分拆,即把事件分拆成若干个互斥事件的和,这样就能正确进行概率计算三、离散型随机变量的期望与频率分布直方图的交汇问题典例 3 某学院为了调查本校学生“阅读相伴”(“阅读相伴”是指课外阅读超过 1 个小时)的天数情况,随机抽取了 40 名本校学生作为样本,统计他们在该月 30 天内“阅读相伴”的天数,并将所得的数据分成以下六组:0,5,(5,10,(10,15,(25,30,由此画出样本的频率分布直方图,如图所示(1)根据频率分布直方图,求这 40 名学生中“阅读相伴”天数超过 20 的人数;(2)现从这 40 名学生中任取 2 名,设 Y 为取出的 2 名学生中“阅读相伴”天数超过 20 的人数,求 Y 的分布列及数学期望 E(Y)思路分析 (1)观察频率分布直方图,求出“阅读相伴”天数超过 20 的频率,即可求出其频数;(2)依题设条件可判断 Y 服从超几何分布,因此可利用超几何分布的概率公式求出 Y 取各个值时的概率,列出分布列,最后求出 E(Y)的值解 (1)由题图可知, “阅读相伴”天数未超过 20 的频率为- 22 - / 22(0.010.020.030.09)×50.15×50.75,所以“阅读相伴”天数超过 20 的学生人数是 40×(10.75)40×0.2510.(2)随机变量 Y 的所有可能取值为 0,1,2.所以 P(Y0),P(Y1),P(Y2).所以 Y 的分布列为Y012P29 525 133 52所以 Y 的数学期望 E(Y)0×1×2×.突破攻略本题将传统的频率分布直方图背景赋予新生的数学期望,立意新颖、构思巧妙求解离散型随机变量的期望与频率分布直方图交汇题的“两步曲”:一是看图说话,即看懂频率分布直方图中每一个小矩形面积表示这一组的频率;二是活用公式,对于这些实际问题中的随机变量 X,如果能够断定它服从超几何分布 H(N,M,n),则随机变量 X的概率可利用概率公式 P(Xm)(m0,1,n,)求得,期望可直接利用公式 E(X)求得

    注意事项

    本文(高考数学一轮复习第十一章计数原理概率随机变量及其分布11-9离散型随机变量的均值与方差正态分布学案理.doc)为本站会员(随风)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开