大一高数试题及答案.pdf
.大一高数试题及答案一、填空题(每小题分,共分)_2函数的定义域为_2 _。x函数上点(,)处的切线方程是_。(Xoh)(Xoh)设(X)在Xo 可导且(Xo),则 hoh_。设曲线过(,),且其上任意点(,)的切线斜率为,则该曲线的方程是_。_。4 _。x设(,)(),则x(,)_。_22RR 22累次积分()化为极坐标下的累次积分为_。0032 2微分方程 ()的阶数为_。32设级数 n发散,则级数 n_。n=1n=1000页脚.二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的()内,每小题分,每小题分,共分)(一)每小题分,共分设函数(),(),则()()0 时,是()无穷大量无穷小量有界变量无界变量下列说法正确的是()若(X)在 XXo 连续,则(X)在 XXo 可导若(X)在 XXo 不可导,则(X)在 XXo 不连续若(X)在 XXo 不可微,则(X)在 XXo 极限不存在若(X)在 XXo 不连续,则(X)在 XXo 不可导若在区间(,)内恒有(),(),则在(,)内曲线弧()为()上升的凸弧下降的凸弧上升的凹弧下降的凹弧设(x)(x),则()(X)(X)为常数(X)(X)为常数(X)(X)()()1()-1页脚.方程在空间表示的图形是()平行于面的平面平行于轴的平面过轴的平面直线332设(,),则(,)()2(,)(,)3(,)(,)2n设n,且,则级数 n()nn=1在时收敛,时发散在时收敛,时发散在时收敛,时发散在时收敛,时发散2方程 是()一阶线性非齐次微分方程齐次微分方程可分离变量的微分方程二阶微分方程(二)每小题分,共分下列函数中为偶函数的是()x3 3 设()在(,)可导,12,则至少有一点(,)使()页脚.()()()()()()()(21)(2)(1)()()(2)(1)()(21)设(X)在 XXo 的左右导数存在且相等是(X)在 XXo 可导的()充分必要的条件必要非充分的条件必要且充分的条件既非必要又非充分的条件设()()2,则(),则()()过点(,)且切线斜率为 3的曲线方程为()444x 2()x030 ()x022y0 对微分方程(,),降阶的方法是()页脚4.设,则 设,则 设,则 设,则 nn设幂级数 n 在o(o)收敛,则 n 在o()n=on=o绝对收敛条件收敛发散收敛性与n有关2设域由,所围成,则()D11 0 x_1y 0y_1x 0 x_1x 0 x三、计算题(每小题分,共分)_ 设 求。()页脚.2()求。x4/3计算 。x2()t1设 (),(),求。0t求过点(,),(,)的直线方程。_x设 ,求。xasin计算。002求微分方程()通解。将()展成的幂级数。()()四、应用和证明题(共分)(分)设一质量为的物体从高空自由落下,空气阻力正比于速度(比例常数为)求速度与时间的关系。_(分)借助于函数的单调性证明:当时,。附:高数(一)参考答案和评分标准附:高数(一)参考答案和评分标准一、填空题(每小题分,共分)页脚.(,)2 2()/22 ()00三阶发散二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的()内,每小题分,每小题分,共分)(一)每小题分,共分(二)每小题分,共分三、计算题(每小题分,共分)解:()()(分)页脚.()(分)_()(分)()2()解:原式(分)x4/32()()(分)xx 解:原式(分)x2()x()(分)xx2()xx (分)xxx()(分)x解:因为(),()(分)()所以 (分)()解:所求直线的方向数为,(分)所求直线方程为(分)_x+y+sinz解:()(分)_一、页脚.DBDACCADACBBCBADAADA二课程代码:00020一、单项选择题(本大题共一、单项选择题(本大题共2020 小题,每小题小题,每小题 2 2 分,共分,共 4040 分)分)在每小题列出的四个备选项中只有一个是符合题目要求的,在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括请将其代码填写在题后的括号内。错选、多选或未选均无分。号内。错选、多选或未选均无分。1x1.设函数f(),则f(2x)()xx 1A.C.11 2xB.21 x2(x 1)2(x 1)D.2xx2.已知 f(x)=ax+b,且 f(-1)=2,f(1)=-2,则 f(x)=()A.x+3B.x-3C.2xD.-2xxx)()xx 1-1A.eB.e3.lim(4.函数y C.D.1x 3的连续区间是()(x 2)(x 1)A.(,2)(1,)B.(,1)(1,)C.(,2)(2,1)(1,)D.3,(x 1)ln(x 1)2,x 15.设函数f(x)在 x=-1 连续,则 a=()a,x 1A.1B.-16.设 y=lnsinx,则 dy=()A.-cotx dxC.-tanx dx7.设 y=a(a0,a1),则 yx(n)C.2D.0B.cotx dxD.tanx dxx0()A.0B.1nC.lnaD.(lna)8.设一产品的总成本是产量 x 的函数 C(x),则生产 x0个单位时的总成本变化率(即边际成本)是()A.C(x)xB.C(x)xxx0页脚.dC(x)dC(x)D.xx0dxdx-x9.函数 y=e-x 在区间(-1,1)内()A.单调减小B.单调增加C.不增不减D.有增有减10.如可微函数 f(x)在 x0处取到极大值 f(x0),则()C.A.f(x0)0C.f(x0)0B.f(x0)0D.f(x0)不一定存在11.f(x)xf(x)dx()A.f(x)+CC.xf(x)+C2B.xf(x)dxD.x f(x)dx12.设 f(x)的一个原函数是 x,则xf(x)dx()x3A.C3B.x+Cx5D.C1552C.x3 C313.288e3xdx()A.0C.xB.2e083xdx2e dxD.322x2exdx14.下列广义积分中,发散的是()A.C.1dx01xdxxB.D.1dx0031xdx1 x015.满足下述何条件,级数Un1n一定收敛()A.U 有界ii1nB.lim Un 0nUC.limn1 r 1nUnD.|Un1n|收敛16.幂级数页脚(x 1)n1n的收敛区间是().A.0,2C.0,2x2yB.(0,2)D.(-1,1)17.设z ex2y,则z()yxy22x2yA.ex2yB.eC.2xey22D.1eyx2y18.函数 z=(x+1)+(y-2)的驻点是()A.(1,2)B.(-1,2)C.(-1,-2)D.(1,-2)19.20y20 xcosxcosydxdy()A.0B.1C.-1D.2dy1 sin x满足初始条件 y(0)=2 的特解是()dxA.y=x+cosx+1B.y=x+cosx+2C.y=x-cosx+2D.y=x-cosx+3二、简单计算题(本大题共二、简单计算题(本大题共5 5 小题,每小题小题,每小题 4 4 分,共分,共 2020 分)分)20.微分方程21.求极限lim(n 3 n)n 1.n22.设y x,求y(1).1xcos2xdx.1 sin xcosx2224.求函数 z=ln(1+x+y)当 x=1,y=2 时的全微分.23.求不定积分25.用级数的敛散定义判定级数n11n n 1的敛散性.三、计算题(本大题共三、计算题(本大题共4 4 小题,每小题小题,每小题 6 6 分,共分,共 2424 分)分)yzz y.26.设z xy xF(u),u,F(u)为可导函数,求xxxy27.计算定积分I21xlnxdx.28.计算二重积分I Dcos(x2 y2)dxdy,其中 D 是由 x 轴和y x2所围成的闭区域.2页脚.dy y ex 0满足初始条件 y(1)=e 的特解.dx四、应用题(本大题共四、应用题(本大题共2 2 小题,每小题小题,每小题 8 8 分,共分,共 1616 分)分)29.求微分方程x30.已知某厂生产 x 件某产品的成本为 C=25000+200 x+12x.问40(1)要使平均成本最小,应生产多少件产品?(2)如产品以每件 500 元出售,要使利润最大,应生产多少件产品?31.求由曲线y x,直线 x+y=6 和10.设函数y=lnx,则它的弹性函数2-xEy=_.Ex11.函数f(x)=xe 的单调增加区间为_.12.不定积分dx2x 3=_.13.设f(x)连续且x0f(t)dt x2 cos2x,则f(x)=_.14.微分方程xdy-ydx=2dy的通解为_.2z15.设 z=xe,则=_.xyxy三、计算题(一)(本大题共 5 小题,每小题 5 分,共 25 分)k exx 016.设函数 f(x)=在x=0 处连续,试求常数k.3x 1x 0ex17.求函数 f(x)=+x arctanx的导数.2sin xx218.求极限lim.x0 xexsin x19.计算定积分20.求不定积分220sin2xdx.1 x1 x2dx.四、计算题(二)(本大题共 3 小题,每小题 7 分,共 21 分)3221.求函数f(x)=x-6x+9x-4 在闭区间0,2上的最大值和最小值.22.已知f(3x+2)=2xe,计算23.计算二重积分-3x52f(x)dx.2xydxdy,其中D是由直线y=x,x=1 以及x轴所围的区域.D五、应用题(本大题 9 分)24.已知矩形相邻两边的长度分别为x,y,其周长为4.将矩形绕其一边旋转一周得一旋转体(如页脚.图).问当x,y各为多少时可使旋转体的体积最大?21222324252627282930三-3/2-e-1x-arctgx+C3/2y+2=0t2f(x,y)-1/(2sqrt(x)sqrt(y)2pi/31/2(c_1x+c_2)e(4x)页脚.四一、DCBCDAAD二页脚ACBBCBADAADA.21222324252627282930三-3/2-e-1x-arctgx+C3/2y+2=0t2f(x,y)-1/(2sqrt(x)sqrt(y)2pi/31/2(c_1x+c_2)e(4x)页脚.四页脚.页脚