2010数学高考题分类 13、概率与统计.doc
数学第十一章 概率与统计第十一章 概率与统计概率【考试要求】(1)了解随机事件的发生存在着规律性和随机事件概率的意义(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率(3)了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率(4)会计算事件在n次独立重复试验中恰好发生次的概率【考题】1、 (北京卷文3)从1,2,3,4,5中随机选取一个数为a,从1,2,3中随机选取一个数为b,则b>a的概率是() (A) (B) (C) (D)2、 (辽宁卷理3)两个实习生每人加工一个零件加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为()(A) (B) (C) (D)3、 (湖北卷理4)投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是()A B C D 4、 (江西卷文9)有位同学参加某项选拔测试,每位同学能通过测试的概率都是,假设每位同学能否通过测试是相互独立的,则至少有一位同学通过测试的概率为()A BCD5、 (安徽卷文10)甲从正方形四个顶点中任意选择两个顶点连成直线,乙从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是()(A) (B) (C) (D)6、 (江西卷理11)一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别记为和.则()ABCD以上三种情况都有可能7、 (上海卷理9)从一副混合后的扑克牌(52张)中随机抽取1张,事件A为“抽得红桃K”,事件B为“抽得为黑桃”,则概率P(AB)= (结果用最简分数表示)8、 (湖南卷理11)在区间上随机取一个数x,则的概率为 9、 (福建卷理13)某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮。假设某选手正确回答每个问题的概率都是08,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于 。10、 (辽宁卷文13)三张卡片上分别写上字母E、E、B,将三张卡片随机地排成一行,恰好排成英文单词BEE的概率为 。11、 (重庆卷理13)某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为,则该队员每次罚球的命中率为_.12、 (安徽卷理15)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球。先从甲罐中随机取出一球放入乙罐,分别以和表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以表示由乙罐取出的球是红球的事件,则下列结论中正确的是_(写出所有正确结论的编号)。; ; 事件与事件相互独立; 是两两互斥的事件; 的值不能确定,因为它与中究竟哪一个发生有关13、 (山东卷文19)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.()从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;()先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求的概率.14、 (江苏卷22)某厂生产甲、乙两种产品,生产甲产品一等品80%,二等品20%;生产乙产品,一等品90%,二等品10%。生产一件甲产品,如果是一等品可获利4万元,若是二等品则要亏损1万元;生产一件乙产品,如果是一等品可获利6万元,若是二等品则要亏损2万元。设生产各种产品相互独立,记x(单位:万元)为生产1件甲产品和件乙产品可获得的总利润,(I)求x的分布列;(II)求生产4件甲产品所获得的利润不少于10万元的概率随机变量、统计【考试要求】(1)了解离散型随机变量的意义,会求出某些简单的离散型随机变量的分布列(2)了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差(3)会用随机抽样、系统抽样、分层抽样等常用的抽样方法从总体中抽取样本(4)会用样本频率分布去估计总体分布(5)了解正态分布的意义及主要性质(6)了解线性回归的方法和简单应用15、 (山东卷理5)已知随机变量服从正态分布N(0, ),若P(>2)=0.023。则P(-22)=()(A)0.477 (B)0.628 (C) 0.954 (D) 0.97716、 (湖北卷理6)将参加夏令营的600名学生编号为:001,002,600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003这600名学生分住在三个营区,从001到300在第营区,从301到495住在第营区,从496到600在第营区,三个营区被抽中的人数一次为()A26, 16, 8, B25,17,8C25,16,9 D24,17,917、 (山东卷理6)样本中共有五个个体,其值分别为a,0,1,2,3。若该样本的平均值为1,则样本方差为()(A) (B) (C) (D)218、 (广东卷理7)已知随机变量X服从正态分布N(3,1),且P(2 X 4)=0.6826,则P(X>4)=( )A、0.1588 B、0.1587 C、0.1586 D、0.158519、 (全国新卷理6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为 20、 (上海卷理6)随机变量的概率分布率由下图给出:则随机变量的均值是 21、 (湖南卷理9)已知一种材料的最佳加入量在110g到210g之间。若用0.618法安排实验,则第一次试点的加入量可以是 g22、 (北京卷理11文12)从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)。由图中数据可知a 。若要从身高在 120 , 130),130 ,140) , 140 , 150三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在140 ,150内的学生中选取的人数应为 。23、 (安徽卷文14)某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取l00户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收人家庭70户依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是 .24、 (湖北卷理14)某射手射击所得环数的分布列如下:78910Px0.10.3y已知的期望E=8.9,则y的值为 .25、 (福建卷理16)设是不等式的解集,整数。()记“使得成立的有序数组”为事件,试列举包含的基本事件;()设,求的分布列及其数学期望。26、 (北京卷理17)某同学参加3门课程的考试。假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为,(),且不同课程是否取得优秀成绩相互独立。记为该生取得优秀成绩的课程数,其分布列为0123 ()求该生至少有1门课程取得优秀成绩的概率;()求,的值;()求数学期望。27、 (广东卷理17)某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上40件产品作为样本算出他们的重量(单位:克)重量的分组区间为(490,,(495,,(510,,由此得到样本的频率分布直方图,如图4所示。(I)根据频率分布直方图,求重量超过505克的产品数量。(II)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列。(III)从该流水线上任取5件产品,求恰有2件产品的重量超过505克的概率。28、 (湖南卷理17)图4是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图()求直方图中x的值(II)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数X的分布列和数学期望。29、 (重庆卷理17)在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起,若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,6),求:(I)甲、乙两单位的演出序号至少有一个为奇数的概率;(II)甲、乙两单位之间的演出单位个数的分布列与期望。30、 (四川卷理17)某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料。()求甲中奖且乙、丙都没有中奖的概率;()求中奖人数的分布列及数学期望E.31、 (江西卷理18)某迷宫有三个通道,进入迷宫的每个人都要经过一个智能门,首次到达此门,系统会随机(即等可能)为你打开一个通道若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止令表示走出迷宫所需的时间(1)求的分布列;(2)求的数学期望32、 (全国卷理18)投到某杂志的稿件,先由两位初审专家进行评审若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用设稿件能通过各初审专家评审的概率均为05,复审的稿件能通过评审的概率为03各专家独立评审 (I)求投到该杂志的1篇稿件被录用的概率; (II)记表示投到该杂志的4篇稿件中被录用的篇数,求的分布列及期望33、 (天津卷理18)某射手每次射击击中目标的概率是,且各次射击的结果互不影响。()假设这名射手射击5次,求恰有2次击中目标的概率()假设这名射手射击5次,求有3次连续击中目标。另外2次未击中目标的概率;()假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记为射手射击3次后的总的分数,求的分布列。34、 (辽宁卷理18)为了比较注射A, B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B。()甲、乙是200只家兔中的2只,求甲、乙分在不同组的概率;()下表1和表2分别是注射药物A和B后的试验结果.(疱疹面积单位:mm2)()完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;()完成下面2×2列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.表3: 35、 (全国新卷理19文19)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老人,结果如下:()估计该地区老年人中,需要志愿提供帮助的老年人的比例;()能否有99的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?()根据()的结论,能否提出更好的调查办法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由。36、 (陕西卷理19)为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行出样检查,测得身高情况的统计图如下:(I)估计该校男生的人数;(II)估计该校学生身高在170185cm之间的概率;(III)从样本中身高在180190cm之间的男生中任选2人,求至少有1人身高在185190cm之间的概率。37、 (浙江卷理19)如图,一个小球从M处投入,通过管道自上而下落A或B或C。已知小球从每个叉口落入左右两个 管道的可能性是相等的某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为l,2,3等奖(I)已知获得l,2,3等奖的折扣率分别为50,70,90记随变量为获得k(k=1,2,3)等奖的折扣率,求随机变量的分布列及期望;(II)若有3人次(投入l球为l人次)参加促销活动,记随机变量为获得1等奖或2等奖的人次,求38、 (全国卷理20)如图,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,电流能通过T1,T2,T3的概率都是p,电流能通过T4的概率是0.9电流能否通过各元件相互独立已知T1,T2,T3中至少有一个能通过电流的概率为0.999()求p;()求电流能在M与N之间通过的概率;()表示T1,T2,T3,T4中能通过电流的元件个数,求的期望39、 (山东卷理20)某学校举行知识竞赛,第一轮选拔共设有A、B、C、D四个问题,规则如下:每位参加者记分器的初始分均为10分,答对问题A、B、C、D分别加1分、2分、3分、6分,答错任一题减2分;每回答一题,记分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局;每位参加者按问题A、B、C、D顺序作答,直至答题结束。假设甲同学对问题A、B、C、D回答正确的概率依次为、,且各题回答正确与否相互之间没有影响。()求甲同学能进入下一轮的概率;()用表示甲同学本轮答题结束时答题的个数,求的分布列和数学期望。40、 (安徽卷理21)品酒师需定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这瓶酒,并重新按品质优劣为它们排序,这称为一轮测试。根据一轮测试中的两次排序的偏离程度的高低为其评分。 现设,分别以表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令,则是对两次排序的偏离程度的一种描述。()写出的可能值集合;()假设等可能地为1,2,3,4的各种排列,求的分布列;()某品酒师在相继进行的三轮测试中,都有,(i)试按()中的结果,计算出现这种现象的概率(假定各轮测试相互独立);(ii)你认为该品酒师的酒味鉴别功能如何?说明理由。【答案】1-6 DBCDC B7、8、9、0.12810、1/3 11、3/5 12、 13、1/3,13/1614、15-18 CBDB 19、20020、8.221、171.8或148.2 22、0.030, 323、24、0.425、;19/626、27、28、 29、30、 31、32、33、34、35、36、37、38、 39、40、;- 12 -