(新课标)高中数学《1.3 算法案例》教案3 新人教A版必修3.docx
-
资源ID:73274830
资源大小:16.89KB
全文页数:5页
- 资源格式: DOCX
下载积分:5.8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
(新课标)高中数学《1.3 算法案例》教案3 新人教A版必修3.docx
(新课标)高中数学1.3 算法案例教案3 新人教A版必修3 第3课时案例3 进位制 导入新课 情境导入 在日常生活中,我们最熟悉、最常用的是十进制,据说这与古人曾以手指计数有关,爱好天文学的古人也曾经采用七进制、十二进制、六十进制,至今我们仍然使用一周七天、一年十二个月、一小时六十分的历法.今天我们来学习一下进位制. 推进新课 新知探究 提出问题 (1)你都了解哪些进位制? (2)举出常见的进位制. (3)思考非十进制数转换为十进制数的转化方法. (4)思考十进制数转换成非十进制数及非十进制之间的转换方法. 活动:先让学生思考或讨论后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路 讨论结果: (1)进位制是人们为了计数和运算方便而约定的计数系统,约定满二进一,就是二进制;满十进一,就是十进制;满十二进一,就是十二进制;满六十进一,就是六十进制等等.也就是说:“满几进一”就是几进制,几进制的基数(都是大于1的整数)就是几. (2)在日常生活中,我们最熟悉、最常用的是十进制,据说这与古人曾以手指计数有关,爱好天文学的古人也曾经采用七进制、十二进制、六十进制,至今我们仍然使用一周七天、一年十二个月、一小时六十分的历法. (3)十进制使用09十个数字.计数时,几个数字排成一行,从右起,第一位是个位,个位上的数字是几,就表示几个一;第二位是十位,十位上的数字是几,就表示几个十;接着依次是百位、千位、万位 例如:十进制数3 721中的3表示3个千,7表示7个百,2表示2个十,1表示1个一.于是,我们得到下面的式子: 3 721=3×103+7×102+2×101+1×100. 与十进制类似,其他的进位制也可以按照位置原则计数.由于每一种进位制的基数不同,所用的数字个数也不同.如二进制用0和1两个数字,七进制用06七个数字. 一般地,若k是一个大于1的整数,那么以k为基数的k进制数可以表示为一串数字连写在一起的形式 a n a n-1a1a0(k)(0a nk,0a n-1,a1,a0k). 其他进位制的数也可以表示成不同位上数字与基数的幂的乘积之和的形式,如 110 011(2)=1×25+1×24+0×23+0×22+1×21+1×20, 7 342(8)=7×83+3×82+4×81+2×80. 非十进制数转换为十进制数比较简单,只要计算下面的式子值即可: a n a n-1a1a0(k)=a n×k n+a n-1×k n-1+a1×k+a0. 第一步:从左到右依次取出k进制数a n a n-1a1a0(k)各位上的数字,乘以相应的k的幂,k的幂从n开始取值,每次递减1,递减到0,即a n×k n,a n-1×k n-1,a1×k,a0×k0; 第二步:把所得到的乘积加起来,所得的结果就是相应的十进制数. (4)关于进位制的转换,教科书上以十进制和二进制之间的转换为例讲解,并推广到十进制和其他进制之间的转换.这样做的原因是,计算机是以二进制的形式进行存储和计算数据的, 第3课时案例3 进位制 导入新课 情境导入 在日常生活中,我们最熟悉、最常用的是十进制,据说这与古人曾以手指计数有关,爱好天文学的古人也曾经采用七进制、十二进制、六十进制,至今我们仍然使用一周七天、一年十二个月、一小时六十分的历法.今天我们来学习一下进位制. 推进新课 新知探究 提出问题 (1)你都了解哪些进位制? (2)举出常见的进位制. (3)思考非十进制数转换为十进制数的转化方法. (4)思考十进制数转换成非十进制数及非十进制之间的转换方法. 活动:先让学生思考或讨论后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路 讨论结果: (1)进位制是人们为了计数和运算方便而约定的计数系统,约定满二进一,就是二进制;满十进一,就是十进制;满十二进一,就是十二进制;满六十进一,就是六十进制等等.也就是说:“满几进一”就是几进制,几进制的基数(都是大于1的整数)就是几. (2)在日常生活中,我们最熟悉、最常用的是十进制,据说这与古人曾以手指计数有关,爱好天文学的古人也曾经采用七进制、十二进制、六十进制,至今我们仍然使用一周七天、一年十二个月、一小时六十分的历法. (3)十进制使用09十个数字.计数时,几个数字排成一行,从右起,第一位是个位,个位上的数字是几,就表示几个一;第二位是十位,十位上的数字是几,就表示几个十;接着依次是百位、千位、万位 例如:十进制数3 721中的3表示3个千,7表示7个百,2表示2个十,1表示1个一.于是,我们得到下面的式子: 3 721=3×103+7×102+2×101+1×100. 与十进制类似,其他的进位制也可以按照位置原则计数.由于每一种进位制的基数不同,所用的数字个数也不同.如二进制用0和1两个数字,七进制用06七个数字. 一般地,若k是一个大于1的整数,那么以k为基数的k进制数可以表示为一串数字连写在一起的形式 a n a n-1a1a0(k)(0a nk,0a n-1,a1,a0k). 其他进位制的数也可以表示成不同位上数字与基数的幂的乘积之和的形式,如 110 011(2)=1×25+1×24+0×23+0×22+1×21+1×20, 7 342(8)=7×83+3×82+4×81+2×80. 非十进制数转换为十进制数比较简单,只要计算下面的式子值即可: a n a n-1a1a0(k)=a n×k n+a n-1×k n-1+a1×k+a0. 第一步:从左到右依次取出k进制数a n a n-1a1a0(k)各位上的数字,乘以相应的k的幂,k的幂从n开始取值,每次递减1,递减到0,即a n×k n,a n-1×k n-1,a1×k,a0×k0; 第二步:把所得到的乘积加起来,所得的结果就是相应的十进制数. (4)关于进位制的转换,教科书上以十进制和二进制之间的转换为例讲解,并推广到十进制和其他进制之间的转换.这样做的原因是,计算机是以二进制的形式进行存储和计算数据的,