长白山橄榄岩包体的流变学性质探析,硕士论文.docx
长白山橄榄岩包体的流变学性质探析,硕士论文橄榄岩包体是由碱性玄武岩或金伯利岩由上地幔携带至地表的物质,是人们了解上地幔的 窗口 ,为研究上地幔的成分、构造构造、温压条件、深部地质经过提供资料,对地球动力学研究具有重要意义.长白山橄榄岩包体位于华北克拉通东北缘,包体特征的研究能够揭示陆下岩石圈地幔的性质,并为区域构造演 化提供制约.前人对于该地区大陆下部上地幔岩石圈流变学性质的了解仅局限于地球物理、地球化学等间接推断,缺少从橄榄岩包体的角度直接获取.本次研究我们选取一批新鲜的长白山橄榄岩包体,通过包体的矿物成分和化学成分、P-T条件、显微构造,以及包体中橄榄石和辉石的晶格优选方位(LPO)系统研究该地区陆下岩石圈地幔流变学特征,限制大地构造环境.成分分析表示清楚,这些包体中,橄榄石以镁橄榄石为主,Mg#值为 89-91,代表包体所在区域的上地幔为过渡型地幔.显微构造分析表示清楚橄榄石是以高温位错蠕变为主,显微构造样式主要包括位错壁、扭折带和亚颗粒等.电子背散射衍射分析表示清楚该地区的橄榄石的织构是典型的 A 型组构(010)100为主要活动滑移系,构成于含水量低,应力低,温度相对高的环境),A 型组构也是典型的天然橄榄石的组构.对包体中平衡矿物对的计算获取橄榄岩包体的平衡温度介于 850-1100之间.对橄榄石可观察的重结晶颗粒粒度大小进行统计,利用橄榄石应力计计算出的的包体差异流动应力范围 22-36 MPa,在中国东北地区正常的应力值范围内,属于正常地幔稳态流变应力.在获取上述参数的基础上,本文通过高温流变律的计算获得的上地幔应变速率 约 为 1.5 10-15-1.1 10-11s-1 , 等 效 粘 滞 度 约 为8.5 1011-6.6 1015MPa s.本文通过对长白山橄榄岩包体的详细研究,初次获取了该地区上地幔详细的流变学条件和组构特征,为该地区大地构造活动提供了流变学约束,也为该地区的后续研究提供了新的参数. 本文关键词语:橄榄岩包体,流变学特征,晶格优选方位,吉林长白山 ABSTRACT Mantle peridotite xenoliths are carried out by alkaline basalt or kimberlite from theupper mantle to the surface. It provides a unique windows for people to understandand study the upper mantle composition, structure, thermal state, lattice preferredorientation(LPO) of olivine and pyroxene and deep geological processes of the uppermantle. And thus, it is of great significance for the geodynamics. Mantle peridotitexenoliths in Changbai Mountain area, located near the northeast part of the edge ofNorth China Craton constrain the nature and evolution of the underneathsubcontinental lithospheric mantle(SCLM). In fact, research on these peridotitexenoliths in Changbai Mountain are few and some extent will filled up the gaps in theprevious studies that relying on geophysics or geochemistry. Here, we report majorelement composition of the xenoliths minerals, the P-T conditions, xenolithsmicrostructure, and olivines and pyroxenes fabric in Changbai Mountain area. And,the subcontinental lithospheric mantle in this area is constrained. Olivine in xenolithsis mainly belong to forsterite with Mg# value between 89-91. Microstructures arecharacterized by free dislocation, dislocation walls, kink bands, subgrains and so on,indicating a high temperature plastic deformation. The fabric of olivine is a typicalA-type (010)100 is considering as the dominant activation slip system, with lowwater contents and low stresses and maybe with a wide range of temperature). Theequilibration temperature conditions, calculated based on equilibration mineral parts,indicate the evolution of peridotites in a the range of 850-1100 . The differentialstress computed by the size of recrystallized grain is 22-36 MPa. Based on thosecondition parameters and flow law estimated by laboratory deformation data, wecalculated the effective strain rate of the upper mantle is about 1.5 10-15-1.1 10-11s-1, and the effective viscosity 8.5 1011-6.6 1015MPa ? s. The study is thefirst time directly reveal rheological and fabric properties of the upper mantle inChangbai Mountain, of which will provide constraints for the geodynamic activitiesand give new data for further research. Key word: mantle peridotite xenoliths; rheological properties; lattice preferredorientation; Changbai Mountain, Jilin 目录 幅较长,部分内容省略,具体全文见文末附件 第八章 结论 本文通过对长白山橄榄岩包体进行矿物组成、温压条件、显微构造及矿物晶格优选方位(LPO)的系统研究,得出下面几点认识: (1)长白山地区橄榄岩包体主要是尖晶石相橄榄岩包体.橄榄石 Fo 值介于89-91 之间,反映了过渡型地幔的特征.尖晶石 Cr#值介于 10-12 之间,属于低铬尖晶石,该地区地幔经历了 0.97%-10.06%程度的部分熔融.整体上看,该地区的橄榄岩包体具有非克拉通区的特征. (2)该地区橄榄岩包体平衡温度约为 850-1100之间,岩石圈上地幔差异流动应力范围 30-38MPa 之间,应变速率约为,有效粘滞度约为 . (3)该地区橄榄石组构主要为 A 型组构,反映包体构成于贫水相对低应力的环境,与大陆岩石圈环境相符. (4)华北克拉通东北缘上地幔在化学成分或温度上存在较大程度的不均一性,而差异应力场则较为均一. 以下为参考文献 1 Arai, S. (1994). Characterization of spinel peridotites by olivine-spinel compositionalrelationships: Review and interpretation. Chemical Geology 113(3): 191-204. 2 Arai, S., S. Ishimaru and V. M. Okrugin (2003). Metasomatized harzburgite xenoliths fromAvacha volcano as fragments of mantle wedge of the Kamchatka arc: Implication for themetasomatic agent. Island Arc 12(2): 233-246. 3 Ave Lallemant, H. G., J. C. C. Mercier, N. L. Carter and J. V. Ross (1980). Rheology of theupper mantle: Inferences from peridotite xenoliths. Tectonophysics 70(1): 85-113. 4 Becker, S. (1930). Gef gekunde der Gesteine. Berlin: Sp ringer. 5 Bunge, H.-J. (1982). Texture analysis in materials science : mathematical methods. London ;,Butterworths. 6 Cao, Y., H. Jung and S. Song (2021). Olivine fabrics and tectonic evolution of forearcmantles: A natural perspective from the Songshugou dunite and harzburgite in the Qinlingorogenic belt, central China. Geochemistry, Geophysics, Geosystems 18(3): 907-934. 7 Cao, Y., H. Jung and S. Song (2021). Seismic anisotropies of the Songshugou peridotites(Qinling orogen, central China) and their seismic implications. Tectonophysics 722: 432-446. 8 Cao, Y., S. Song, L. Su, H. Jung and Y. Niu (2021). Highly refractory peridotites inSongshugou, Qinling orogen: Insights into partial melting and melt/fluid-rock reactions in forearcmantle. Lithos 252-253: 234-254. 9 Chen, L., W. Tao, L. Zhao and T. Zheng (2008). Distinct lateral variation of lithosphericthickness in the Northeastern North China Craton. Earth and Planetary Science Letters 267(1):56-68. 10 Chen, L., T. Zheng and W. Xu (2006). A thinned lithospheric image of the Tanlu Fault Zone,eastern China: Constructed from wave equation based receiver function migration. Journal ofGeophysical Research: Solid Earth 111(B9). 11 Chopra, P. N. and M. S. Paterson (1984). The role of water in the deformation of dunite. Journal of Geophysical Research: Solid Earth 89(B9): 7861-7876. 12 Drury, M. R., H. G. Av Lallemant, G. M. Pennock and L. N. Palasse (2018). Crystal preferred orientation in peridotite ultramylonites deformed by grain size sensitive creep, ?tang deLers, Pyrenees, France. Journal of Structural Geology 33(12): 1776-1789. 13 Falus, G., A. Tommasi, J. Ingrin and C. Szab (2008). Deformation and seismic anisotropyof the lithospheric mantle in the southeastern Carpathians inferred from the study of mantlexenoliths. Earth and Planetary Science Letters 272(1): 50-64. 14 H, Jung. and Karato. S (2001). Water-induced fabric transitions in olivine. Science (NewYork, N.Y.) 293(5534). 15 Hansen, L. N., M. E. Zimmerman and D. L. Kohlstedt (2020). The influence ofmicrostructure on deformation of olivine in the grain-boundary sliding regime. Journal ofGeophysical Research: Solid Earth 117(B9). 16 Hao, Y.-T., Q.-K. Xia, Z.-B. Jia, Q.-C. Zhao, P. Li, M. Feng and S.-C. Liu (2021). Regionalheterogeneity in the water content of the Cenozoic lithospheric mantle of Eastern China. Journalof Geophysical Research: Solid Earth 121(2): 517-537. 17 Hellebrand, E., J. E. Snow, H. J. B. Dick and A. W. Hofmann (2001). Coupled major andtrace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410:677. 18 Holtzman, B. K., D. L. Kohlstedt, M. E. Zimmerman, F. Heidelbach, T. Hiraga and J. Hustoft(2003). Melt Segregation and Strain Partitioning: Implications for Seismic Anisotropy andMantle Flow. Science 301(5637): 1227-1230. 19 Hu, S., L. He and J. Wang (2000). Heat flow in the continental area of China: a new dataset. Earth and Planetary Science Letters 179(2): 407-419. 20 sma , W. B. and D. Mainprice (1998). An olivine fabric database: an overview of uppermantle fabrics and seismic anisotropy. Tectonophysics 296(1): 145-157. 21 Jian, W. (2020). Behavior of Siderophile and Chalcophile Elements in the SubcontinentalLithospheric Mantle beneath the Changbaishan Volcano, NE China. 地质学报:英文版 86(2). 22 Jian, W., L. Jinlin, H. Keiko, X. Wenliang, X. Zhipeng and S. Yue (2020). Behavior ofSiderophile and Chalcophile Elements in the Subcontinental Lithospheric Mantle beneath theChangbaishan Volcano, NE China. Acta Geologica Sinica - English Edition 86(2): 407-422. 23 Jung, H., I. Katayama, Z. Jiang, T. Hiraga and S. Karato (2006). Effect of water and stresson the lattice-preferred orientation of olivine. Tectonophysics 421(1): 1-22. 24 Jung, H., W. Mo and H. W. Green (2018). Upper mantle seismic anisotropy resulting frompressure-induced slip transition in olivine. Nature Geoscience 2(1): 73-77. 25 Karato, S.-i., H. Jung, I. Katayama and P. Skemer (2008). Geodynamic Significance ofSeismic Anisotropy of the Upper Mantle: New Insights from Laboratory Studies. Annual Reviewof Earth and Planetary Sciences 36(1): 59-95. 26 Lysak, S. V. (2018). Thermal history, geodynamics, and current thermal activity oflithosphere in China. Russian Geology and Geophysics 50(9): 815-825. 27 M, B. (2000). High shear strain of olivine aggregates: rheological and seismicconsequences. Science (New York, N.Y.) 5496(290). 28 Mainprice, D., A. Tommasi, H. Couvy, P. Cordier and D. J. Frost (2005). Pressure sensitivityof olivine slip systems and seismic anisotropy of Earth s upper mantle. Nature 433(7027):731-733. 29 McLaren, A. C. (1978). Crystalline plasticity and solid state flow in metamorphic rocks. Earth-Science Reviews 14(2): 171-172. 30 Mercier, J. C. C. and A. Nicolas (1975). Textures and Fabrics of Upper-Mantle Peridotites asIllustrated by Xenoliths from Basalts. Journal of Petrology 16(2): 454-487. 31 Michibayashi, K., Y. Kusafuka, T. Satsukawa and S. J. Nasir (2020). Seismic properties ofperidotite xenoliths as a clue to imaging the lithospheric mantle beneath NE Tasmania, Australia. Tectonophysics 522-523: 218-223. 32 Nehru, C. E. and P. J. Wyllie (1974). Electron microprobe measurement of pyroxenescoexisting with H2O-undersaturated liquid in the join CaMgSi2O6-Mg2Si2O6-H2O at 30 kilobars,with applications to geothermometry. Contributions to Mineralogy and Petrology 48(3): 221-228. 33 Ohuchi, T., T. Kawazoe, Y. Nishihara and T. Irifune (2020). Change of olivine a-axisalignment induced by water: Origin of seismic anisotropy in subduction zones. Earth andPlanetary Science Letters 317-318: 111-119. 34 Ohuchi, T., T. Kawazoe, Y. Nishihara, N. Nishiyama and T. Irifune (2018). High pressureand temperature fabric transitions in olivine and variations in upper mantle seismic anisotropy. Earth and Planetary Science Letters 304(1): 55-63. 35 Park, Y. and H. Jung (2021). Deformation microstructures of olivine and pyroxene in mantlexenoliths in Shanwang, eastern China, near the convergent plate margin, and implications for seismic anisotropy. International Geology Review 57(5-8): 629-649. 36 Raterron, P., E. Amiguet, J. Chen, L. Li and P. Cordier (2018). Experimental deformation ofolivine single crystals at mantle pressures and temperatures. Physics of the Earth and PlanetaryInteriors 172(1): 74-83. 37 Raterron, P., J. Chen, T. Geenen and J. Girard (2018). Pressure effect on forsteritedislocation slip systems: Implications for upper-mantle LPO and low viscosity zone. Physics ofthe Earth and Planetary Interiors 188(1): 26-36. 38 Raterron, P., J. Girard and J. Chen (2020). Activities of olivine slip systems in the uppermantle. Physics of the Earth and Planetary Interiors 200-201: 105-112. 39 Ross, C. S., A. T. Myers and M. D. Foster (1954). Origin of dunites and of olivine-richinclusions in basaltic rocks1. American Mineralogist 39(9-10): 693-737. 40 Rudnick, R. L., S. Gao, W.-l. Ling, Y.-s. Liu and W. F. McDonough (2004). Petrology andgeochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos77(1): 609-637. 41 Sachtleben, T. and H. A. Seck (1981). Chemical control of Al-solubility in orthopyroxeneand its implications on pyroxene geothermometry. Contributions to Mineralogy and Petrology78(2): 157-165. 42 Sodoudi, F., X. Yuan, Q. Liu, R. Kind and J. Chen (2006). Lithospheric thickness beneaththe Dabie Shan, central eastern China from S receiver functions. Geophysical JournalInternational 166(3): 1363-1367. 43 Tommasi, A., D. Mainprice, G. Canova and Y. Chastel (2000). Viscoplastic self-consistentand equilibrium-based modeling of olivine lattice preferred orientations: Implications for theupper mantle seismic anisotropy. Journal of Geophysical Research: Solid Earth 105(B4):7893-7908. 44 Tommasi, A., A. Vauchez and D. A. Ionov (2008). Deformation, static recrystallization, andreactive melt transport in shallow subcontinental mantle xenoliths (Tok Cenozoic volcanic field,SE Siberia). Earth and Planetary Science Letters 272(1): 65-77. 45 Vauchez, A., F. Dineur and R. Rudnick (2005). Microstructure, texture and seismicanisotropy of the lithospheric mantle above a mantle plume: Insights from the Labait volcanoxenoliths (Tanzania). Earth and Planetary Science Letters 232(3): 295-314. 46 Wang, F., X.-H. Zhou, L.-C. Zhang, J.-F. Ying, Y.-T. Zhang, F.-Y. Wu and R.-X. Zhu (2006). Late Mesozoic volcanism in the Great Xing an Range (NE China): Timing and implications forthe dynamic setting of NE Asia. Earth and Planetary Science Letters 251(1): 179-198. 47 Wang Jian, L. J., Hattori Keiko,Xu Wenliang,Xie Zhipeng and Song Yue (2020). Behavior ofSiderophile and Chalcophile Elements in the Subcontinental Lithospheric Mantle beneath theChangbaishan Volcano,NE China. Acta Geologica Sinica - English Edition 86: 16. 48 Wanger, P. A. (1930). The evidence of the kimberlite pipe on the constitution of outer part ofthe Earth. S.Afr.Jour.Sci. 25: 80. 49 Wells, P. R. A. (1977). Pyroxene thermometry in simple and complex systems. Contributions to Mineralogy and Petrology 62(2): 129-139. 50 Wheeler, J. (2018). Anisotropic rheology during grain boundary diffusion creep and itsrelation to grain rotation, grain boundary sliding and superplasticity. Philosophical Magazine90(21): 2841-2864. 51 Wood, B. J. and S. Banno (1973). Garnet-orthopyroxene and orthopyroxene-clinopyroxenerelationships in simple and complex systems. Contributions to Mineralogy and Petrology 42(2):109-124. 52 Wu, F.-y., R. J. Walker, X.-w. Ren, D.-y. Sun and X.-h. Zhou (2003). Osmium isotopicconstraints on the age of lithospheric mantle beneath northeastern China. Chemical Geology196(1): 107-129. 53 Yu, S.-Y., Y.-G. Xu, J.-L. Ma, Y.-F. Zheng, Y.-S. Kuang, L.-B. Hong, W.-C. Ge and L.-X.Tong (2018). Remnants of oceanic lower crust in the subcontinental lithospheric mantle: Traceelement and Sr-Nd-O isotope evidence from aluminous garnet pyroxenite xenoliths from Jiaohe,Northeast China. Earth and Planetary Science Letters 297(3). 54 Zhang, M., P. Hu, Y. Niu and S. Su (2007). Chemical and stable isotopic constraints on thenature and origin of volatiles in the sub-continental lithospheric mantle beneath eastern China. Lithos 96(1): 55-66. 55 Zhang, S. and S.-i. Karato (1995). Lattice preferred orientation of olivine aggregatesdeformed in simple shear. Nature 375(6534): 774-777. 56 Zhao, L., R. M. Allen, T. Zheng and S.-H. Hung (2018). Reactivation of an Archea