欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    有限元分析第二讲杆单元.ppt

    • 资源ID:73417782       资源大小:491KB        全文页数:29页
    • 资源格式: PPT        下载积分:11.9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要11.9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    有限元分析第二讲杆单元.ppt

    2 杆单元n n一、一维等截面杆单元及其刚度矩阵一、一维等截面杆单元及其刚度矩阵L 杆长A 截面积E 弹性模量考虑一个考虑一个2 2节点一维等截面杆单元:节点一维等截面杆单元:(一)直接法导出单元特性杆单元伸长量:应力应变关系:杆单元位移杆单元应变杆单元应力应变位移关系:应变:应力:杆内力:杆的轴向刚度:轴向拉压变形模式下,该杆单元的行为与弹簧单元相同,因此杆单元的刚度矩阵为:比照弹簧元的刚度方程,写出杆单元的刚度方程为:(二)公式法导出杆单元特性1、单元上假设近似位移场位移模式单元上位移假设为简单多项式函数:用插值法把多项式中的待定系数 转化为节点位移从而得到插值形式的假设位移函数单元位移模式如下:上式中:单元位移模式写成矩阵形式:单元位移模式写成矩阵形式:注意:采用一次多项式是因为单元只有注意:采用一次多项式是因为单元只有2个轴向位个轴向位移分量,对应移分量,对应2个多项式系数。个多项式系数。2、单元应变:单元应变:单元应变矩阵 3、单元应力:单元应力:4、应用弹性体虚功原理导出单元刚度方程。、应用弹性体虚功原理导出单元刚度方程。q虚功原理弹性体受力平衡时,若发生虚位移,则外力虚功等于弹性体内的虚应变能。平衡条件对于杆单元,定义虚位移如下:节点虚位移:单元虚位移:节点力(外力)虚功:单元虚应变能:则单元虚应变:对杆单元应用虚位移原理,得:考虑到 的任意性,立刻得到:这就是刚度矩阵的一般形式,可推广到其他类型的单元。杆单元刚度矩阵对于上面的杆单元:与前面直接法得到的公式相同!(三)关于杆单元的讨论1)在单元坐标系下,每个节点一个未知位移分量,单元共有2个自由度。2)单元刚度矩阵元素的物理意义:刚度方程中令:则:所以,单元刚度矩阵的第i(i=1,2)列元素表示当维持单元的第i个自由度位移为,其它自由度位移为时,施加在单元上的节点力分量。(也可以用此方法直接导出杆单元的刚度矩阵元素,试练习)单元刚度矩阵性质:对称、奇异、主对角元素恒正。单元刚度方程(四)举例例1 求图示段杆中的应力。解:分个杆单元,单元之间在节点连接。各单元的刚度矩阵分别为:参考前面弹簧系统的方法,装配杆系统的有限元方程(平衡方程)如下:引入边界位移约束和载荷:则系统平衡方程化为:上述方程组中删除第,个方程,得到:解得:位移解:单元1应力:单元2应力:提示:1)本例中单元应力的计算采用了材料力学中的方法,与采用有限元单元应力公式 的结果相同。2)对锥形杆,单元截面积可用平均值。3)求应力之前需要求出节点位移有限元位移法。例2:已知:求:杆两端的支反力解n n二、二维空间中的杆单元二、二维空间中的杆单元 (平面桁架单元)(平面桁架单元)(一)2-D空间中杆单元1-D空间杆单元 2-D空间杆单元 坐标变换原来1-D空间中的杆坐标系作为局部坐标系局部局部总体总体每节点一个每节点一个dofdof每节点每节点2 2个个dofdofq节点位移向量的坐标变换:向量的坐标变换矩阵为:显然是正交阵,即:单元节点位移向量的变换式如下:或单元节点力的变换为:q刚度矩阵的坐标变换局部坐标系下杆单元的刚度方程为:扩充到4自由度形式:写成矩阵符号形式:利用前面的向量坐标变换式,得:考虑到变换矩阵的正交性,得:总体坐标系中的杆单元刚度矩阵为:用单元刚度矩阵装配系统刚度矩阵的方法与1-D情况相同,按节点号对子块重新排列。单元应力:即:(二)例题平面桁架由2根相同的杆组成(E,A,L)。求:1)节点2位移2)每根杆应力解:求出每个单元在总体坐标下的刚度矩阵:单元1:1-2单元2:2-3将单元1,2的刚度方程扩张到系统规模(6阶),相加后引入节点平衡条件:再引入边界约束和载荷:则上面6阶有限元方程凝聚为:解出未知位移得:按公式计算杆应力:得:

    注意事项

    本文(有限元分析第二讲杆单元.ppt)为本站会员(wuy****n92)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开