欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    第一 矢量分析.pptx

    • 资源ID:73442730       资源大小:1.49MB        全文页数:48页
    • 资源格式: PPTX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第一 矢量分析.pptx

    11.1.标量和矢量标量和矢量矢量的大小或模矢量的大小或模:矢量的单位矢量矢量的单位矢量:标量标量:一个只用大小描述的物理量。矢量的代数表示矢量的代数表示:1.1 矢量代数矢量代数矢量矢量:一个既有大小又有方向特性的物理量,常用黑体字 母或带箭头的字母表示。矢量的几何表示矢量的几何表示:一个矢量可用一条有方向的线段来表示 注意注意:单位矢量不一定是常矢量。矢量的几何表示常矢量常矢量:大小和方向均不变的矢量。第1页/共48页2矢量用坐标分量表示矢量用坐标分量表示zxy第2页/共48页3(1)矢量的加减法 两矢量的加减在几何上是以这两矢量为邻边的平行四边形的对角线,如图所示。矢量的加减符合交换律和结合律2.矢量的代数运算矢量的代数运算 矢量的加法矢量的减法 在直角坐标系中两矢量的加法和减法:结合律结合律交换律交换律第3页/共48页4(2 2)标量乘矢量(3)矢量的标积(点积)矢量的标积符合交换律q矢量矢量 与与 的夹角的夹角第4页/共48页5(4)矢量的矢积(叉积)qsinABq矢量矢量 与与 的叉积的叉积用坐标分量表示为写成行列式形式为若 ,则若 ,则第5页/共48页6(5 5)矢量的混合运算 分配律 分配律 标量三重积 矢量三重积第6页/共48页7 三维空间任意一点的位置可通过三条相互正交曲线的交点来确定。1 1.2.2 三种常用的正交曲线坐标系三种常用的正交曲线坐标系 在电磁场与波理论中,三种常用的正交曲线坐标系为:直角直角坐标系、圆柱坐标系和坐标系、圆柱坐标系和球面坐标系球面坐标系。三条正交曲线组成的确定三维空间任意点位置的体系,称为正交曲线坐标系正交曲线坐标系;三条正交曲线称为坐标轴坐标轴;描述坐标轴的量称为坐标变量坐标变量。第7页/共48页81、直角坐标系 位置矢量面元矢量线元矢量体积元坐标变量坐标单位矢量 点P(x0,y0,z0)0yy=(平面)o x y z0 xx=(平面)0zz=(平面)P 直角坐标系 x yz直角坐标系的长度元、面积元、体积元 odzd ydx第8页/共48页92、圆柱面坐标系坐标变量坐标单位矢量位置矢量线元矢量体积元面元矢量第9页/共48页103、球面坐标系、球面坐标系球面坐标系球坐标系中的线元、面元和体积元坐标变量坐标单位矢量位置矢量线元矢量体积元面元矢量第10页/共48页114、坐标单位矢量之间的关系 直角坐标与与圆柱坐标系圆柱坐标与与球坐标系直角坐标与与球坐标系oqrz单位圆单位圆 柱坐标系与求坐标系之间坐标单位矢量的关系qq ofxy单位圆单位圆 直角坐标系与柱坐标系之间坐标单位矢量的关系 f第11页/共48页121.3 标量场的梯度标量场的梯度q如果物理量是标量,称该场为标量场标量场。例如:温度场、电位场、高度场等。q如果物理量是矢量,称该场为矢量场矢量场。例如:流速场、重力场、电场、磁场等。q如果场与时间无关,称为静态场静态场,反之为时变场时变场。时变标量场和矢量场可分别表示为:确定空间区域上的每一点都有确定物理量与之对应,称在该区域上定义了一个场场。从数学上看,场是定义在空间区域上的函数:标量场和矢量场标量场和矢量场静态标量场和矢量场可分别表示为:第12页/共48页131.1.标量场的等值面标量场的等值面标量场的等值线(面)等值面等值面:标量场取得同一数值的点在空 间形成的曲面。等值面方程等值面方程:常数C 取一系列不同的值,就得到一系列不同的等值面,形成等值面族;标量场的等值面充满场所在的整个空间;标量场的等值面互不相交。等值面的特点等值面的特点:意义意义:形象直观地描述了物理量在空间 的分布状态。第13页/共48页142.方向导数方向导数意义意义:方向性导数表示场沿某方向的空间变化率。概念概念:u(M)沿 方向增加;u(M)沿 方向减小;u(M)沿 方向无变化。M0M方向导数的概念 特点特点:方向性导数既与点M0有关,也与 方向有关。问题问题:在什么方向上变化率最大、其最大的变化率为多少?的方向余弦。式中:第14页/共48页15梯度的表达式梯度的表达式:圆柱面坐标系 球面坐标系直角面坐标系 3、标量场的梯度、标量场的梯度(或或 )意义意义:描述标量场在某点的最大变化率及其变化最大的方向概念概念:,其中 取得最大值的方向第15页/共48页16标量场的梯度是矢量场,它在空间某点的方向表示该点场变化最大(增大)的方向,其数值表示变化最大方向上场的空间变化率。标量场在某个方向上的方向导数,是梯度在该方向上的投影。梯度的性质梯度的性质:梯度运算的基本公式梯度运算的基本公式:标量场的梯度垂直于通过该点的等值面(或切平面)第16页/共48页17 例例1.2.1 设一标量函数 (x,y,z)=x2y2z 描述了空间标量场。试求:(1)该函数 在点P(1,1,1)处的梯度,以及表示该梯度方向的单位矢量;(2)求 该 函 数 沿 单 位 矢 量 el=ex cos60 ey cos45 ez cos60 方向的方向导数,并以点P(1,1,1)处的方向导数值与该点的梯度值作以比较,得出相应结论。解解 (1)由梯度计算公式,可求得P点的梯度为第17页/共48页18表征其方向的单位矢量 (2)由方向导数与梯度之间的关系式可知,沿由方向导数与梯度之间的关系式可知,沿el方向的方向导数为方向的方向导数为对于给定的P P点,上述方向导数在该点取值为第18页/共48页19而该点的梯度值为 显然,梯度 描述了P P点处标量函数 的最大变化率,即最大的方向导数,故 恒成立。第19页/共48页201.4 矢量场的通量与散度矢量场的通量与散度 1、矢量线、矢量线 意义意义:形象直观地描述了矢量场的空间分 布状态。矢量线方程矢量线方程:概念概念:矢量线是这样的曲线,其上每一 点的切线方向代表了该点矢量场 的方向。矢量线矢量线oM 第20页/共48页212、矢量场的通量、矢量场的通量 问题问题:如何定量描述矢量场的大小?引入通量的概念。通量的概念通量的概念:其中:面积元矢量;面积元的法向单位矢量;穿过面积元 的通量;如果曲面 S 是闭合的,则规定曲面法矢由闭合曲面内指向外,矢量场对闭合曲面的通量是:面积元矢量第21页/共48页22通过闭合曲面有净的矢量线穿出有净的矢量线进入进入与穿出闭合曲面的矢量线相等矢量场通过闭合曲面通量的三种可能结果 闭合曲面的通量从宏观上宏观上建立了矢量场通过闭合曲面的通量与曲面内产生矢量场的源的关系。通量的物理意义通量的物理意义第22页/共48页233、矢量场的散度、矢量场的散度 为了定量研究场与源之间的关系,需建立场空间任意点(小体积元)的通量源与矢量场(小体积元曲面的通量)的关系。利用极限方法得到这一关系:称为矢量场的散度散度。散度是矢量通过包含该点的任意闭合小曲面的通量与曲面元体积之比的极限。第23页/共48页24柱面坐标系球面坐标系直角坐标系散度的表达式散度的表达式:散度的有关公式散度的有关公式:第24页/共48页25直角坐标系下散度表达式的推导直角坐标系下散度表达式的推导 由此可知,穿出前、后两侧面的净通量值为oxy在直角坐标系中计算在直角坐标系中计算FzzDxDyDP 不失一般性,令包围P点的微体积 V 为一直平行六面体,如图所示。则第25页/共48页26根据定义,则得到直角坐标系中的散度 表达式为 同理,分析穿出另两组侧面的净通量,并合成之,即得由点P 穿出该六面体的净通量为第26页/共48页274、散度定理、散度定理体积的剖分体积的剖分VS1S2en2en1S 从散度的定义出发,可以得到矢量场在空间任意闭合曲面的通量等于该闭合曲面所包含体积中矢量场的散度的体积分,即 散度定理是闭合曲面积分与体积分之间的一个变换关系,在电磁理论中有着广泛的应用。第27页/共48页281.5 矢量场的环流和旋度矢量场的环流和旋度 1.矢量场的环流与旋涡源矢量场的环流与旋涡源 例如:流速场 不是所有的矢量场都由通量源激发。存在另一类不同于通量源的矢量源,它所激发的矢量场的力线是闭合的,它对于任何闭合曲面的通量为零。但在场所定义的空间中闭合路径的积分不为零。第28页/共48页29 如磁场沿任意闭合曲线的积分与通过闭合曲线所围曲面的电流成正比,即:上式建立了磁场的环流与电流的关系。第29页/共48页30q如果矢量场的任意闭合回路的环流恒为零,称该矢量场为无旋场无旋场,又称为保守场保守场。q如果矢量场对于任何闭合曲线的环流不为零,称该矢量场为有旋矢量场有旋矢量场,能够激发有旋矢量场的源称为旋涡源旋涡源。电流是磁场的旋涡源。环流的概念环流的概念 矢量场对于闭合曲线C 的环流定义为该矢量对闭合曲线C 的线积分,即第30页/共48页31 过点M 作一微小曲面 S,它的边界曲线记为C,曲面的法线方向n与曲线的绕向成右手螺旋法则。当 S0时,极限称为矢量场在点M 处沿方向n的环流面密度环流面密度。矢量场的环流给出了矢量场与积分回路所围曲面内旋涡源的宏观联系。为了给出空间任意点矢量场与旋涡源的关系,引入矢量场的旋度。特点特点:其值与点M 处的方向n有关。2、矢量场的旋度、矢量场的旋度()(1)环流面密度)环流面密度第31页/共48页32而 推导 的示意图如图所示。oyDz DyCMzx1234计算计算 的示意图的示意图 直角坐标系中直角坐标系中 、的表达式的表达式第32页/共48页33于是 同理可得故得概念概念:矢量场在M点处的旋度为一矢量,其数值为M点的环流面 密度最大值,其方向为取得环量密度最大值时面积元的法 线方向,即物理意义物理意义:旋涡源密度矢量。性质性质:(2)矢量场的旋度)矢量场的旋度第33页/共48页34旋度的计算公式旋度的计算公式:直角坐标系圆柱面坐标系球面坐标系第34页/共48页35旋度的有关公式旋度的有关公式:矢量场的旋度矢量场的旋度的散度恒为零的散度恒为零标量场的梯度标量场的梯度的旋度恒为零的旋度恒为零第35页/共48页363、Stokes定理定理 Stokes定理是闭合曲线积分与曲面积分之间的一个变换关系式,也在电磁理论中有广泛的应用。曲面的曲面的剖分剖分方向相反大小相等结果抵消 从旋度的定义出发,可以得到矢量场沿任意闭合曲线的环流等于矢量场的旋度在该闭合曲线所围的曲面的通量,即第36页/共48页374、散度和旋度的区别、散度和旋度的区别 第37页/共48页381、矢量场的源、矢量场的源散度源散度源:是标量,产生的矢量场在包围源的封闭面上的通量 等于(或正比于)该封闭面内所包围的源的总和,源在一给定点的(体)密度等于(或正比于)矢量 场在该点的散度;旋度源旋度源:是矢量,产生的矢量场具有涡旋性质,穿过一曲面 的旋度源等于(或正比于)沿此曲面边界的闭合回 路的环量,在给定点上,这种源的(面)密度等于 (或正比于)矢量场在该点的旋度。1.6 无旋场与无散场无旋场与无散场第38页/共48页392、矢量场按源的分类、矢量场按源的分类(1)无旋场性质性质:,线积分与路径无关,是保守场。仅有散度源而无旋度源的矢量场,无旋场可以用标量场的梯度表示为例如:静电场第39页/共48页40(2)无散场 仅有旋度源而无散度源的矢量场,即性质性质:无散场可以表示为另一个矢量场的旋度例如,恒定磁场第40页/共48页41(3 3)无旋、无散场(源在所讨论的区域之外)(4 4)有散、有旋场这样的场可分解为两部分:无旋场部分和无散场部分无旋场部分无散场部分第41页/共48页421.7 拉普拉斯运算与格林定理拉普拉斯运算与格林定理 1、拉普拉斯运算、拉普拉斯运算 标量拉普拉斯运算概念概念:拉普拉斯算符直角坐标系计算公式计算公式:圆柱坐标系球坐标系第42页/共48页43 矢量拉普拉斯运算概念概念:即注意注意:对于非直角分量,直角坐标系中:如:第43页/共48页442.格林定理格林定理 设任意两个标量场 及,若在区域 V 中具有连续的二阶偏导数,那么,可以证明该两个标量场 及 满足下列等式。根据方向导数与梯度的关系,上式又可写成式中S 为包围V 的闭合曲面,为标量场 在 S 表面的外法线 en 方向上的偏导数。以上两式称为标量第一格林定理标量第一格林定理。SV,第44页/共48页45基于上式还可获得下列两式:上两式称为标量第二格林定理标量第二格林定理。格林定理说明了区域 V 中的场与边界 S 上的场之间的关系。因此,利用格林定理可以将区域中场的求解问题转变为边界上场的求解问题。此外,格林定理反映了两种标量场之间满足的关系。因此,如果已知其中一种场的分布,即可利用格林定理求解另一种场的分布。格林定理广泛地用于电磁理论。第45页/共48页46亥姆霍兹定理亥姆霍兹定理:若矢量场在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则当矢量场的散度及旋度给定后,该矢量场可表示为 式中:亥姆霍兹定理说明:在无界空间区域,矢量场可由其散度及旋度确定。1.8 亥姆霍兹定理亥姆霍兹定理第46页/共48页47有界区域 在有界区域,矢量场不但与该区域中的散度和旋度有关,还与区域边界上矢量场的切向分量和法向分量有关。第47页/共48页48感谢您的观看!第48页/共48页

    注意事项

    本文(第一 矢量分析.pptx)为本站会员(莉***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开