模糊PID【控制专区】器的设计与仿真——设计步骤.pdf
-
资源ID:73569772
资源大小:415.22KB
全文页数:7页
- 资源格式: PDF
下载积分:11.9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
模糊PID【控制专区】器的设计与仿真——设计步骤.pdf
cheng模糊 PID 控制器的设计与仿真设计模糊 PID 控制器时,首先要将精确量转换为模糊量,并且要把转换后的模糊量映射到模糊控制论域当中,这个过程就是精确量模糊化的过程。模糊化的主要功能就是将输入量精确值转换成为一个模糊变量的值,最终形成一个模糊集合。本次设计系统的精确量包括以下变量:变化量e,变化量的变化速率ec 还有参数整定过程中的输出量KP,KD,KI,在设计模糊PID 的过程中,需要将这些精确量转换成为模糊论域上的模糊值。本系统的误差与误差变化率的模糊论域与基本论域为:E=-6,-4,-2,0,2,4,6;Ec=-6,-4,-2,0,2,4,6。模糊 PID 控制器的设计选用二维模糊控制器。以给定值的偏差 e 和偏差变化 ec 为输入;KP,KD,KI为输出的自适应模糊PID 控制器,见图 1。图 1 模糊 PID 控制器(1)模糊变量选取输入变量 E 和 EC 的模糊化将一定范围(基本论域)的输入变量映射到离散区间(论域)需要先验知识来确定输入变量的范围。就本系统而言,设置语言变量取七个,分别为 NB,NM,NS,ZO,PS,PM,PB。(2)语言变量及隶属函数根据控制要求,对各个输入,输出变量作如下划定:e,ec 论域:-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6KP,KD,KI论域:-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6应用模糊合成推理 PID 参数的整定算法。第k 个采样时间的整定为KP(k)KP0 KP(k),KI(k)KI0 KI(k),KD(k)KD0 KD(k).式中KP0,KI0,KD0为经典 PID 控制器的初始参数。chengcheng设置输入变量隶属度函数如图 2 所示,输出变量隶属度函数如图 3 所示。图 2 输入变量隶属度函图 3 输出变量隶属度函(3)编辑模糊规则库chengcheng根据以上各输出参数的模糊规则表,可以归纳出 49 条控制逻辑规则,具体的控制规则如下所示:1.If(e is NB)and(ec is NB)then(kp is NB)(ki is PB)(kd is NS)(1)2.If(e is NB)and(ec is NM)then(kp is NB)(ki is PB)(kd is PS)(1)3.If(e is NB)and(ec is NS)then(kp is NM)(ki is PM)(kd is PB)(1)4.If(e is NB)and(ec is ZO)then(kp is NM)(ki is PM)(kd is PB)(1)5.If(e is NB)and(ec is PS)then(kp is NS)(ki is PS)(kd is PB)(1)6.If(e is NB)and(ec is PM)then(kp is ZO)(ki is ZO)(kd is PM)(1)7.If(e is NB)and(ec is PB)then(kp is ZO)(ki is ZO)(kd is NS)(1)8.If(e is NM)and(ec is NB)then(kp is NB)(ki is PB)(kd is NS)(1)9.If(e is NM)and(ec is NM)then(kp is NB)(ki is PB)(kd is PS)(1)10.If(e is NM)and(ec is NS)then(kp is NM)(ki is PM)(kd is PB)(1)11.If(e is NM)and(ec is ZO)then(kp is NS)(ki is PS)(kd is PM)(1)12.If(e is NM)and(ec is PS)then(kp is NS)(ki is PS)(kd is PM)(1)13.If(e is NM)and(ec is PM)then(kp is ZO)(ki is ZO)(kd is PS)(1)14.If(e is NM)and(ec is PB)then(kp is PS)(ki is ZO)(kd is ZO)(1)15.If(e is NS)and(ec is NB)then(kp is NM)(ki is PB)(kd is ZO)(1)16.If(e is NS)and(ec is NM)then(kp is NM)(ki is PM)(kd is PS)(1)17.If(e is NS)and(ec is NS)then(kp is NM)(ki is PS)(kd is PM)(1)18.If(e is NS)and(ec is ZO)then(kp is NS)(ki is PS)(kd is PM)(1)19.If(e is NS)and(ec is PS)then(kp is ZO)(ki is ZO)(kd is PS)(1)20.If(e is NS)and(ec is PM)then(kp is PS)(ki is NS)(kd is PS)(1)21.If(e is NS)and(ec is PB)then(kp is PS)(ki is NS)(kd is ZO)(1)22.If(e is ZO)and(ec is NB)then(kp is NM)(ki is PM)(kd is ZO)(1)23.If(e is ZO)and(ec is NM)then(kp is NM)(ki is PM)(kd is PS)(1)24.If(e is ZO)and(ec is NS)then(kp is NS)(ki is PS)(kd is PS)(1)25.If(e is ZO)and(ec is ZO)then(kp is ZO)(ki is ZO)(kd is PS)(1)26.If(e is ZO)and(ec is PS)then(kp is PS)(ki is NS)(kd is PS)(1)27.If(e is ZO)and(ec is PM)then(kp is PM)(ki is NM)(kd is PS)(1)28.If(e is ZO)and(ec is PB)then(kp is PM)(ki is NM)(kd is ZO)(1)29.If(e is PS)and(ec is NB)then(kp is NS)(ki is PM)(kd is ZO)(1)30.If(e is PS)and(ec is NM)then(kp is NS)(ki is PS)(kd is ZO)(1)31.If(e is PS)and(ec is NS)then(kp is ZO)(ki is ZO)(kd is ZO)(1)32.If(e is PS)and(ec is ZO)then(kp is PS)(ki is NS)(kd is ZO)(1)33.If(e is PS)and(ec is PS)then(kp is PS)(ki is NS)(kd is ZO)(1)34.If(e is PS)and(ec is PM)then(kp is PM)(ki is NM)(kd is ZO)(1)35.If(e is PS)and(ec is PB)then(kp is PM)(ki is NB)(kd is ZO)(1)chengcheng36.If(e is PM)and(ec is NB)then(kp is NS)(ki is ZO)(kd is NB)(1)37.If(e is PM)and(ec is NM)then(kp is ZO)(ki is ZO)(kd is PS)(1)38.If(e is PM)and(ec is NS)then(kp is PS)(ki is NS)(kd is NS)(1)39.If(e is PM)and(ec is ZO)then(kp is PM)(ki is NS)(kd is NS)(1)40.If(e is PM)and(ec is PS)then(kp is PM)(ki is NM)(kd is NS)(1)41.If(e is PM)and(ec is PM)then(kp is PM)(ki is NB)(kd is NS)(1)42.If(e is PM)and(ec is PB)then(kp is PB)(ki is NB)(kd is NB)(1)43.If(e is PB)and(ec is NB)then(kp is ZO)(ki is ZO)(kd is NB)(1)44.If(e is PB)and(ec is NM)then(kp is ZO)(ki is ZO)(kd is NM)(1)45.If(e is PB)and(ec is NS)then(kp is PM)(ki is NS)(kd is NM)(1)46.If(e is PB)and(ec is ZO)then(kp is PM)(ki is NM)(kd is NM)(1)47.If(e is PB)and(ec is PS)then(kp is PM)(ki is NM)(kd is NS)(1)48.If(e is PB)and(ec is PM)then(kp is PB)(ki is NB)(kd is NS)(1)49.If(e is PB)and(ec is PB)then(kp is PB)(ki is NB)(kd is NB)(1)把这 49 条控制逻辑规则,键入到模糊规则库中,如图4。图 4 模糊规则库chengcheng(5)模糊 PID 控制器仿真利用 MATLAB 软件中的 Simulink 仿真环境,可以对模糊 PID 控制器系统进行模拟仿真实验,来检验设计是否达到要求。针对本次控制器设计,我们设置被控10对象为,根据被控对象,设置相应的 PID 参数(s 1)(s 2)(s 3)(s 4)为:KP=6;KI=3;KD=2。图 5 为控制器系统在 Simulink 中的仿真模型。为了方便与传统 PID 控制器进行比较,在 Simulink 仿真环境中作出传统 PID控制以便于对模糊 PID 进行比较。在传统 PID 控制器中设置相应的 PID 参数为:KP=6;KI=3;KD=2。图 6 是传统 PID 与模糊 PID 控制器在 Simulink 中的阶跃仿真波形比较。图 5 传统 PID 与模糊 PID 控制器在 Simulink 中的仿真模型chengcheng图 6 传统 PID 与模糊 PID 控制器在 Simulink 中的阶跃仿真波形比较图 6 中,黄色线为输入的阶跃信号,紫色为输出的传统PID 控制信号,青色为输出的模糊 PID 控制信号,通过图 1-7 中传统 PID 控制方式与模糊 PID 控制控制曲线的对比结果可以看出,模糊控制的控制性能要明显好于传统的 PID 控制效果。我们把输入信号变为正弦信号再一次进行传统 PID 与模糊 PID 控制器的对比。把图 5 的输入阶跃信号改为输入正弦信号即可进行正弦信号的跟踪。图 7是传统 PID 与模糊 PID 控制器在 Simulink 中的正弦仿真波形比较。chengcheng图 7 传统 PID 与模糊 PID 控制器在 Simulink 中的正弦仿真波形比较图 7 中,黄色线为输入的正弦信号,紫色为输出的传统PID 控制信号,青色为输出的模糊 PID 控制信号,通过图 7 中传统 PID 控制方式与模糊 PID 控制控制曲线的对比结果可以看出,依旧是模糊控制的控制性能要明显好于传统的 PID控制效果。cheng