欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    神经网络预测控制精.ppt

    • 资源ID:73618188       资源大小:2.61MB        全文页数:26页
    • 资源格式: PPT        下载积分:18金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要18金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    神经网络预测控制精.ppt

    神经网络预测控制第1页,本讲稿共26页 火电厂锅炉的过热蒸汽温度是其运行质量的重要指标之一,过热蒸汽温度过高或过低都 会影响电厂的安全经济运行,但汽温调节对象是一个多容环节,它的纯延迟时间和时间常数都比较大,干扰因素多,对象模型不确定,在锅炉自动调节系统中属于可控性最差的一个调节系统。一.引言第2页,本讲稿共26页一.引言n目前该系统控制的主导设计方案是PID律,虽然一些先进控制技术近年来尝试在火电厂自动化中应用,但由于理论上的局限性和实现上的具体困难,均未能得到广泛应用。第3页,本讲稿共26页一.引言n本文根据单元控制的思想,并运用神经网络预测控制的方法,应用于过热蒸汽温度控制中。使单元控制的思想得以实现,神经网络更接近生物神经网络的结构,神经网络的优势得以更好发挥。设计出了具有较高可靠性和较强鲁棒性的控制系统。第4页,本讲稿共26页二.单元控制的基本思想 n传统的预测控制系统以整体系统模型为基础,所设计的预测算法是集中式的,随着系统规模的扩大,计算量迅速增加,因此影响到其实时性。另外,很难用一个同质的,单一的集中模型来描述复杂系统,这就需要新的分析方法。第5页,本讲稿共26页二.单元控制的基本思想n单元控制是用单元模型系统描述对象的动态过程,为受控对象建立一种结构分散化模型,它吸收了人工分析系统的经验知识,由定性的结构模型和定量的模型给出单元模型。既含有整体系统的因果结构,又包含单元间的相互关联。此具有网状结构的模型,按照一定意义下的主要因果关系,被抽象出一种链状结构,我们称之为单元模型系统。这种模型比一般多输入多输出系统含有更多的信息量,可以用来设计具有高可靠性和强鲁棒性要求的控制系统。第6页,本讲稿共26页n基于单元的模型是一种多输入单输出系统,通过关联与其他相关单元相关联。通过自身动态变化和单元间相互影响过程,共同描述对象的整体运动特性。针对每个单元设计单元预测系统和控制系统,它通过接受本单元相关信息和直接关联的单元的测量和预测信息,预测该单元的运动趋势,并分析判断,作出该单元的控制决策。第7页,本讲稿共26页各单元预测系统按照研究对象的关联模式相互关联,并经由关联传递单元预测信息,共同完成对整体系统未来一定时间动态特性的预测,而各单元控制系统也经由关联传递控制信息,从而完成对整体系统的控制。单元预测系统的设计和计算是独立的和并行的,单元系统可以是不同性质和不同模式的,能够适用于大型复杂系统地分析预测。第8页,本讲稿共26页二.单元控制的基本思想第9页,本讲稿共26页三.神经网络模型预测控制简介n神经网络模型预测控制是使用非线性神经网络模型来预测未来模型性能。控制器计算控制输入,而控制输入在未来一段指定的时间内将最优化模型性能。模型预测第一步是要建立神经网络模型(系统辨识);第二步是使用控制器来预测未来神经网络性能。第10页,本讲稿共26页三.神经网络模型预测控制简介n模型预测的第一步就是训练神经网络未来表示网络的动态机制。模型输出与神经网络输出之间的预测误差,用来作为神经网络的训练信号。该过程如图二所示。第11页,本讲稿共26页三.神经网络模型预测控制简介n神经网络模型利用当前输入和输出预测神经网络未来输出值。神经网络模型结构如图三所示。该网络可以采用批量在线训练。第12页,本讲稿共26页三.神经网络模型预测控制简介n模型预测方法是水平后退的方法,神经网络模型预测在指定时间内预测模型响应。预测是用数字最优化程序来确定控制信号,通过最优化如下的性能准则函数,即 第13页,本讲稿共26页三.神经网络模型预测控制简介n图四为模型预测控制的过程。控制器由神经网络模型和最优化方块组成,最优化模块确定u(通过最小化J),最优u值作为神经网络模型的输入 第14页,本讲稿共26页四.应用第15页,本讲稿共26页四.应用n常规主蒸汽温度控制方案(串级PID)第16页,本讲稿共26页四.应用其中第17页,本讲稿共26页四.应用第18页,本讲稿共26页四.应用n图9 主蒸汽温度设定值阶跃输入下的仿真比较 第19页,本讲稿共26页四.应用n图十 时间常数改变后的仿真比较 第20页,本讲稿共26页四.应用n图十一 增益改变后的仿真比较 第21页,本讲稿共26页四.应用n图十二加入烟气扰动后的PID控制结构图第22页,本讲稿共26页四.应用n 图十三 加入烟气扰动后的对比曲线第23页,本讲稿共26页四.应用n图十四 加10秒纯滞后以后的仿真结果图第24页,本讲稿共26页四.结论n(1)本文提出的基于单元模型的神经网络预测控制主蒸汽温度控制策略既可保证对主蒸汽温度快而稳的调节,又使得所消耗的减温水量大大降低,可明显提高控制策略的安全性和经济性,符合火电厂机组运行的客观需求。n(2)时间常数鲁棒性很强,而增益鲁棒性较弱,但适应能力很强。可在较短时间内适应参数的变化。n(3)能很好地克服纯滞后并有较强的抗干扰能力。第25页,本讲稿共26页五.参考文献n1 陈铁军,链系统方法及其应用,河南科技出版社,1993.n2 陈铁军并行预测系统与算法.n3 李果勇智能控制及其MATLAB实现,电子工业出版社,2005n4 杨献勇热工过程自动控制I-M北京:清华大学出版社,2000n5 彭钢热工PID控制算法的适应性与局限性分析J河北电力 技术,1997,(6):68n7 范伊波,等基于自适应神经元网络的过热汽温智能控制 J动力工程,1998,(2):710n8 于渤现代控制理论M北京:水利电力出版社,1995 第26页,本讲稿共26页

    注意事项

    本文(神经网络预测控制精.ppt)为本站会员(石***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开