电路相量法线性电路正弦稳态分析.pdf
1 FF=a+jb j iij)FReF=a,ImF=b Re:Real Part;Im:Imaginary Part;cos:cosine;sin:sine;arg:argument of a complex number F0F FF=|F|(cos 0+j sin0)=|F|cos 0+j|F|sin 0=a+jb|F|66=argF 8|F|=Va2+b2 0=tan_1(I)ej0=cos 0+sin 0 F=|F|F=|F|Z0 2 Fi=ai+jbF2=a2+jb2 Fi F2=(ai+jb J (a2+jb2)=(a1 a2)+j(bx b2)FiF2=|Fje IF2I=iFjlFzl|F1F2|=|F1|F2|arg(F1F2)=arg(F1)+arg(F2)Fi=IF1I argarg(Fi)arg(F2)+jF1F2 02/&/FfFt 3 e0=1Z01,6A=|A|eA6,Aj+1e&+2+1 X e*2=+1 X(cos+j sin(+1 X cos)+(+l.X j sin 0+j=j 2=j,e_i2=j,ejn=1 ii=Im C0S(3t+(pi)3ImPiImCOS(3t+Pi)=1lSC0S(3t+5)Sl),imax=ImCOS(3t+%)=-1gn=mimax min=21(3t+J)rad/sd(3t+Pi)T s)f 1/sHz)3T=23=2nf,(f=1/T)f=50Hz,T=f=002s f 50a)=2nx 50=IOOROt=0(3t+Pi)|t=O=Pi|pj 180i0)4 iIm cos(a)t(pi)=1/-/on277 t cosu)tpi)1 iI Ii=Imcos(o)t+i=V2Icos(o)t+cpj i-ii=V211cos(u)t+pii)U2=V2 U2COS(U)t+pu2)P12kU2 P12=(3t+%J(3t+Pu2)=Pil Pu2|L2l 180P12=Pil 0,1112;U2 P12=Pil Pu21=ij.U2|P12=Pil Pu2l=hU2|P12=Pil Pu2l=EhI=Jf+CS2(a)t+Pi)dt=Im/V2=0.707Im i=Im cos(a)t+cpj)Icos?(3t+(pi)dt=0 5 6 (5 180),2=Pil-Pu2)U2u2(p12=(pi1-(pu2)0 u20 u2/I ILi*10FT 2TT tm nU2 F=|F|e6=3t+p,FF=|F|e3t+p)=|F|cos(3t+p)+j|F|sin(3t+p)F ReF=|F|cos(3t+p)i=V2I COS(3t+rto t=0ti 9