2022-2023学年九年级数学中考复习《二次根式的应用》解答专题提升训练题(附答案).pdf
-
资源ID:73745649
资源大小:837.19KB
全文页数:10页
- 资源格式: PDF
下载积分:7.99金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年九年级数学中考复习《二次根式的应用》解答专题提升训练题(附答案).pdf
2022-2023 学年九年级数学中考复习二次根式的应用解答专题提升训练题(附答案)1已知三角形的三边长分别为 a21,b2+1,c,判断三角形的形状,并求出三角形的面积 2(1)已知三角形三边为 a、b、c,其中 a、b 两边满足 a212a+36+0,求这个三角形的最大边 c 的取值范围(2)已知三角形三边为 a、b、c,且+,求这个三角形的周长 3如图,从一个大正方形中截去面积分别为 x2和 y2的两个小正方形已知 x2,y2+,求留下阴影部分面积 4若菱形的两条对角线的长分别为 3+2和 32,求菱形的面积 5 若 a、b 为一等腰三角形的边长,且满足+b4,求此等腰三角形的周长 6“欲穷千里目,更上一层楼”,经测定,站在距离水平地面 h 米高的地方看到的水平距离是 d 米,且 h,d 之间近似地符合公式 d8,如图所示登山爱好者小明从 n 米高的山腰登上 2n 米高的山顶时,在山顶能看到的水平距离是在山腰能看到的水平距离的多少倍?7图中的 A(1,4),B(5,1),C(1,3)和 D(5,2)是一个平行四边形的顶点(a)求 AB 和 AD 的长度,答案以根式表示(b)求平行四边形 ABCD 的周长,准确至三位有效数字 8已知等腰三角形的两边长分别为方程组的两个根,求这个等腰三角形的面积 9学校要在一块长方形的土地上进行绿化,已知这块长方形土地的长 a5m,宽 b4m(1)求该长方形土地的面积(精确到 0.01)(2)若绿化该长方形土地每平方米的造价为 180 元,那么绿化该长方形土地所需资金为多少元?10已知长方形的长 a,宽 b(1)求该长方形的周长;(2)若另一个正方形,其面积与该长方形面积相等,试计算该正方形的周长;(3)通过计算比较,你从中得到什么启示?(4)发挥你的想象力,你还能得到什么结论?11解方程:2x28x+12解不等式:2(x)(x)13如图,正方形 ABCD 的边长为 4,正方形 ECFG 的边长为 8,求阴影部分的面积和周长(提示:1.41,3.61,结果保留小数点后一位)14俗话说,登高望远,从理论上说,当人站在距离地面 h(千米)的高处时,能看到的最远距离 d(千米)满足关系式为 d112,若某大夏观光厅距离地面 0.09 千米,人在观光厅里最多能看多远?15如图,在 RtABC 中,ACB90,CDAB 于 D,AC+1,BC1,AB,求 CD 的长 16由于过度采伐森林和破坏植被,我国许多地区频频遭受沙尘暴的侵袭,近日,A 市气象局测得沙尘暴中心在 A 市的正西方向 300km 的 B 处,以 10km/h 的速度向南偏东 60的 BF 方向移动,距沙尘暴中心 200km 的范围是受沙尘暴影响的区域,问:A 市是否会受到沙尘暴的影响?若不会受到,说明理由;若会受到,求出 A 市受沙尘暴影响的时间 17如图,为正方形 ABCD 和正方形 EFGH(1)若正方形 ABCD 和正方形 EFGH 的边长分别为(+)cm 和()cm,在正方形ABCD 中挖去一个和正方形EFGH 同样大小的正方形,求剩余部分的面积;(2)若正方形 ABCD 是一个面积为 28cm2正方形相框,正方形 EFGH 是一个面积为 7cm2的正方形相框,现在小唯想用长为 25cm 的彩带给这两个相框镶边,请你帮忙计算现有的彩带够吗?如果不够用,还需要买多长的彩带?(参考数据:2.65)18全球气候变暖导致一些冰川融化并消失在冰川消失 12 年后,一种低等植物苔藓就开始在岩石上生长每一个苔藓都会长成近似圆形,苔藓的直径和冰川消失后经过的时间近似地满足如下的关系式:d7(t12)其中 d 代表苔藓的直径,单位是 cm;t 代表冰川消失后经过的时间,单位是年(1)计算冰川消失 16 年后苔藓的直径;(2)若测得一些苔藓的直径是 35cm,则冰川约是在多少年前消失的?19 如图所示,长方形内相邻两个正方形的面积分别为 2 和 4,求长方形内阴影部分的面积 20阅读理解:阅读下面的解题过程,体会如何发现隐含条件,并回答:化简:()2|1x|解:隐含条件 13x0,解得 x 原式(13x)(1x)13x1+x2x 启发应用:已知ABC 三条边的长度分别是,4()2,记ABC 的周长为 CABC(1)当 x2 时,ABC 的最长边的长度是 ;(2)请求出 CABC(用含 x 的代数式表示,结果要求化简)参考答案 1解:a2+b2(21)2+(2+1)226,c2()226,a2+b2c2,边 c 所对的角为 90,三角形是直角三角形 这个三角形面积ab 2解:(1)a212a+36+0,(a6)2+0,a60,b80,则 a6,b8,86c8+6,即 2c14,c 是三角形的最大边,8c14(2)+,解得,b+c8,解得:这个三角形的周长为 3+4+512 3解:截去的两个小正方形的面积是 x2和 y2,小正方形的两个边长分别是 x 和 y,大正方形的面积是:(x+y)2,阴影部分面积是:(x+y)2x2y22xy,x2,y2+,阴影部分面积是:2xy2(2)(2+)2 4解:菱形的两条对角线的长分别为 3+2和 32,菱形的面积(3+2)(32)(3)2(2)2(1812)3 答:该菱形的面积是 3 5解:根据题意得,解得:a2,当 a2 时,b40,即 b4,当等腰三角形三边的长度为 2、2、4 时,2+24,不能构成三角形,舍去;当等腰三角形三边的长度为 2、4、4 时,2+44,可以构成三角形,此时周长为 10 此等腰三角形的周长为 10 6解:登山者看到的原水平线的距离为 d18,现在的水平线的距离为 d28,即他看到的水平线的距离是原来的倍 7解:(a)A(1,4),B(5,1),D(5,2),AB,AD,即 AB 的长是,AD 的长是 2;(2)四边形 ABCD 是平行四边形,ABDC,ADBC,AB,AD2,平行四边形 ABCD 的周长是:2+424.6 8解:方程组的解为:,根据三角形的三边关系可知,等腰三角形的三条边分别为:,或,当腰为时,AB,BD,AD,SABCBCAD;当腰为时,AB,BD,AD,SABCBCAD 故这个等腰三角形的面积为或 9解:(1)长方形土地的面积为:54100244.95 平方米;(2)长方形土地每平方米的造价为 180 元,180244.944082 元 答:该长方形土地所需资金为 44082 元 10解:(1)长方形的周长为:2(a+b)+6(2)长方形的面积为:4,正方形的面积为 4,正方形的边长为 2,正方形的周长为 248;(3)由上面计算可知:若长方形的面积为:ab4,另一个正方形,其面积与该长方形面积相等时,该正方形的周长小于该长方形的周长;(4)若有一个正方形的周长与该长方形的周长相等,此时该正方形的边长为:64,其面积为:()2,则该正方形的面积比长方形的面积要大 也可从正方形的对角线或长方形的对角线进行考虑答案不唯一 11解:移项得:2x+x+28,合并同类项得:30,系数化为 1 得:x20 12解:13解:BFBC+CF,BC4,CF8,BF12;SBFGGFBF48;又 SABDABAD8,S阴影S正方形ABCD+S正方形ECFGSBFGSABD 16+64488,24;BD4,ED4,EG8,BG4,L阴影BD+ED+EG+BG12+4(+)32.1 14解:把 h0.09 代入得:d1121121120.333.6(千米),答:人在观光厅里最多能看 33.6 千米 15解:由题意可得:CDABACCB,把 AC+1,BC1,AB,代入上式得:故 CD 16解:如图,过点 A 作 ACBF 于 C,由题意得,ABC906030,ACAB300150km,150200,A 市受沙尘暴影响,设从 D 点开始受影响,由勾股定理得,CD50(km),受影响的距离为 2CD100(km),受影响的时间1001010(h)故 A 市会受到沙尘暴的影响,A 市受沙尘暴影响的时间为 10h 17解:(1)(+)2()2 15+2+5(152+5)15+2+515+25 4 20(cm2),答:剩余部分的面积为 20cm2;(2)正方形 ABCD 是一个面积为 28cm2正方形相框,正方形 EFGH 是一个面积为 7cm2的正方形相框,正方形 ABCD 和正方形 EFGH 的边长分别为cm 和cm,两个正方形的周长的和为 4+4 42+4 8+4 12 31.8(cm),31.8256.8(cm),31.825,彩带不够,还需要买约 6.8cm 长的彩带 18解:(1)当 t16 时,d77214(cm),答:冰川消失 16 年后苔藓的直径为 14 cm;(2)当 d35 时,5,即 t1225,解得:t37,答:若测得一些苔藓的直径是 35 cm,则冰川约是在 37 年前消失的 19解:由题意可知长方形的长为(2+),宽为 2 阴影部分总面积为:2(2+)(2+4)22 20解:(1)当 x2 时,三角形的三边长度为、3、2,所以ABC 的最长边的长度为 3 故答案为:3;(2)由题意知 x+10、5x0 且 4x0,解得1x4,则原式+5x+44+x+5