欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    第2章信源编码技术优秀PPT.ppt

    • 资源ID:74022923       资源大小:5.51MB        全文页数:87页
    • 资源格式: PPT        下载积分:18金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要18金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第2章信源编码技术优秀PPT.ppt

    第第2章信源编码技术章信源编码技术现在学习的是第1页,共87页信源编码信源编码原始的语音信号,如果不做任何处理,将含有很多的冗余信息,不利于在信道上进行传输。为了提高传输效率,需要对该信号进行压缩,这一步骤称为信源编码。与此类似,图像、视频等信号的压缩,都属于信源编码的范畴。最主要的目的:提高通信的有效性。现在学习的是第2页,共87页信源编码原理:冗余的存在是由于原有信息之间存在着一定的关联,以及不同信息之间出现的概率分布不均匀所致。例:语音的冗余,文字的不均匀性通过编码处理,使得信息之间成为完全独立的符号,且出现概率相同,可以大大压缩原有信息的长度,而保持信息量不变。现在学习的是第3页,共87页2.1.4 信源的信息度量1.信息的基本概念我们在前面讨论了信源的分类与统计描述,主要利用了信源的客观概率分布(包括概率与概率密度)特性描述了信源。为了进一步深入定量地研究信源,仅限于上述一般化的描述是不够的。信源就其信息实质来说,具有不确定性,那么信息与不确定性是什么关系,而不确定性又如何利用客观概率来表达,这就是信源输出的消息(或符号)所包含信息的定量度量问题。现在学习的是第4页,共87页2.信源的信息度量信源输出的是消息,消息的内涵是信息,信息的最主要特征是具有不确定性。如何度量信息的不确定性?信源的统计特性可以采用概率及概率密度来描述,那么度量信息的不确定性与信源的概率与概率密度是什么关系?信源输出的信息量,信息论创始人Shannon将其定义为 H(X)=HP(x1),P(xn)=EIP(xi)=E-logP(xi)=P(xi)logP(xi)现在学习的是第5页,共87页其中,“E”表示求概率统计平均值,即求数学期望值。Shannon称H(X)为信源的信息熵,简称为熵。从数学上看,熵是信源消息概率P(xi)的对数函数logP(xi)的统计平均值,故又称为P(xi)的泛函数,它是定量描述信源的一个重要物理量。熵是Shannon于1948年首先给出的一个从概率统计角度来描述信源不确定性的一个客观物理量,是从信源整体角度上反映信源不确定性的度量。现在学习的是第6页,共87页4.信源编码的理论基础现在我们来讨论信源冗余度的概念,它是信源统计分析中一个非常重要的概念,是信源信息处理、信源编码的理论依据。由于实际信源几乎都是有记忆的,这也就是说信源输出的消息序列的各个消息之间存在着记忆,即统计关联。如果能首先定量地计算出这一统计关联引入的冗余度,就能充分地利用它。下面讨论冗余度及其计算。对于一个最简单二进制信源有下列基本不等式:0H(X/Y)H(X)lb2=1 (2-32)其中lb2为离散二进制信源消息等概率分布时的熵函数值(最大值、极值)。现在学习的是第7页,共87页例2-3 关于英文文字信源冗余度的讨论。根据英文中各个字母(含空格)出现的概率,可列出表2-2。表2-2 英文字母出现概率统计表现在学习的是第8页,共87页 由表2-2,首先求得独立等概率情况下的H0(X)值:H0(X)=lb27=4.76 b再求独立不等概率情况下的H1(X)值:H1(X)=P(xi)lbP(xi)=4.03b还可进一步求得有一阶、二阶记忆下的H2(X)和H3(X)为 H2(X)=3.32 b H3(X)=3.1 b现在学习的是第9页,共87页 最后,利用统计推断方法求得H(X)的值。一般而言,由于采用不同的逼近方法和所取样本上的差异,所推算的结果也不同,这里我们采用Shannon求得的推算值:H(X)1.4b 这 样,利 用 公 式(2-35)及(2-36)可 分 别 求 得=0.29,R=0.71。这一结论说明英文字母信源从理论上看,有71%是多余的,即可以认为一本100页的英文书,理论上看仅有29页是有效的,其余71页从统计角度看完全是多余的。也正是由于理论上存在着这一多余成分,引导了实际工作者对英文信源进行压缩编码的研究。英文信源的分析也带动了各国对自己国家语言文字信源的分析,现将类似结果列于表2-3。现在学习的是第10页,共87页表2-3 不同文字信源冗余度估算现在学习的是第11页,共87页例2-4 关于语音信源冗余度的一个粗略估计。语音信源的编码大致可以分为波形编码、参量编码与混合编码三大类。这里,仅分析冗余度最大的参量编码,即声码器的最大潜力。以英语为例,其音素大约有2728个,若按人们通常讲话的速率,每秒钟大约平均发送10个音素,这时英语语音信源给出的信息率为 上限:I1=lb(256)10=80 b/s下限:I2=lb(128)10=70 b/s现在学习的是第12页,共87页 若按PCM常规数字化编码传送语音,其标准速率为64 kb/s,因此可求得 1=0.001 25 2=0.0011 R1=1-1=1-0.001 25=0.998 75 R2=1-2=1-0.0011=0.9989 可见,语音参量编码潜力巨大。定义理论上最大压缩倍如下:K1=800(倍)K2=914(倍)现在学习的是第13页,共87页 2.2 无失真信源编码无失真信源编码 2.2.1 基本原理我们在前面讨论了无失真信源的信息度量:信源熵H(X)。在本节将进一步分析讨论实现通信系统优化的无失真信源编码定理。为了分析简化,这里仅讨论最简单情况组合下的信源无失真编码定理:离散、无记忆、平稳、遍历、二(多)进制等(变)长编码条件下的信源编码定理。下面,我们将从直观概念出发,直接推导出这类简化信源编码。首先研究等长码,参见图2-2,其中,x为输入,它共有L位(长度),每一位有n种取值可能;s为输出,它共有K位(长度),每一位有m种取值可能。现在学习的是第14页,共87页图2-2 信源编码原理图现在学习的是第15页,共87页倘若不考虑信源的统计特性,为了实现无失真并有效的编码,应分别满足:无失真要求:nLmK(即每个信源组合必须有对应的编码)(2-37)有效性要求:nL mK(即编码组合总数要小于信源组合总数)(2-38)从式(2-37)可推出 (2-39)显然,上述两个条件是相互矛盾的。如何解决这一对矛盾呢?惟一的方法是引入信源的统计特性。这时,就无需对信源输出的全部nL种信息组合一一编码,而仅对其中少数大概率典型组合进行编码。现在学习的是第16页,共87页下面,先分析公式(2-39)的含义,并在引入信源统计特性以后对它作适当的修改。公式(2-39)的右端,其分子部分表示等概率信源的熵,而分母部分则表示等概率码元的熵。当引入信源统计特性以后,信源不再满足等概率,这时分子可修改为不等概率实际信源熵H(X),则有 (2-40)再将上式稍作变化,即可求得典型Shannon第一等长编码定理形式,当 时,有效的无失真信源编译码存在,可构造;(2-41)现在学习的是第17页,共87页反之,当(2-42)时,有效的无失真信源编译码不存在,不可构造。再讨论变长码,这时仅需将公式(2-40)修改为 (2-43)式中将等长码的码长K改成相对应变长码的平均码长 ,平均码长 由下式计算:(2-44)现在学习的是第18页,共87页 再将公式(2-43)稍加修改即可求得典型的Shannon第一变长编码定理形式:对于二进制(m=2),则有当对数取2为底时,有 (2-45)(2-46)(2-47)现在学习的是第19页,共87页式中,K/L表示平均每个码元的长度。可见它要求平均每个码元的长度应与信源熵相匹配,因此又称为熵编码。实现无失真信源编码的基本方法有两大类型:一类为改造信源方式,即将实际不理想的不等概率信源变换成理想的具有最大熵值的等概率信源,再采用等长编码进行匹配;另一类为适应信源方式,即对实际的不等概率信源采用与之相匹配的变长编码方法,包括最佳变长哈夫曼(Haffman)编码、算术编码以及适合于有记忆信源的游程编码等。现在学习的是第20页,共87页2.2.2 哈夫曼(Huffman)编码哈夫曼编码是一种统计压缩的可变长编码,它将预编码的字符用另一套不定长的编码来表示,基本原理是:按照概率统计结果,出现概率高的字符用较短的编码来表示,出现概率低的字符用较长的编码来表示。编码压缩性能是由压缩率(compression ratio)来衡量的,它等于每个采样值压缩前的平均比特数与压缩后的平均比特数之比。由于编码的压缩性能与编码技术无关,而与字符集的大小有关,因此,通常可以将字符集转化成一种扩展的字符集,这样采用相同的编码技术就可以获得更好的压缩性能。现在学习的是第21页,共87页哈夫曼编码过程可用于任意两个字符集。下面分析一个任意输入字符集到一个二进制输出字符集的转换过程。哈夫曼编码过程类似于树形生成过程。首先列出输入字符集及其概率(或相对频率),以降序排列,这些列表项相应于树枝末端,每个分支都标注了等于该分支概率的分支权值。现在开始生成包含这些分支的树:将最低概率的两个分支合并(在分支节点处),形成一个新分支,并标注上两个概率的相加值;每次合并后,将新的分支和剩下的分支重新排序(若需要),以保证减少的列表概率的递降性,将这种排列方法称为冒泡法。在每次合并后的重排中,新的分支在列表中不断上升至不能上升为止。现在学习的是第22页,共87页因此,如果形成一个权值为0.2的分支,在冒泡过程中发现其他两个分支的权值也是0.2,那么,新的分支将被冒泡到权值为0.2的分支组的顶端,而不是简单地加入。冒泡到同权值组的顶端可以生成码长方差小的编码,以降低缓冲溢出的可能性。为了讨论方便、描述准确,我们定义n元素m字符集为:字符集中共有n个元素,每个元素都包含m个字符,即每个元素包含的字符数目相同。现在学习的是第23页,共87页例2-5 6元素单字符集的哈夫曼编码。设6元素单字符集中每个元素的出现概率如表2-4所示。表2-4 6元素单字符集哈夫曼编码的详细参数现在学习的是第24页,共87页图2-3 6元素单字符集的哈夫曼编码树现在学习的是第25页,共87页 将哈夫曼编码过程应用于表2-4所示的输入字符集。按照哈夫曼编码规则,生成哈夫曼编码树,如图2-3所示。然后在哈夫曼编码树的每个分支节点标上二进制数“0”或“1”,以区分两个分支。这种标记可以是任意的,但为了保持一致,将每个节点的上向分支标为“1”,下向分支标为“0”。标记好之后,沿着树径从树基(最右)到每个分支(最左)的路径包含了到达该分支的二进制序列,该二进制序列就是分支对应字符的哈夫曼编码,哈夫曼编码的详细参数如表2-4所示。现在学习的是第26页,共87页可计算出字符集的平均码长是2.4b。这好像意味着我们必须找到一个传输非整数比特的方法。实际上这个结果表明,当要传输100个输入码元时,通信信道中平均需要传输240 b。比较一下,若采用等长码来表示6元素单字符集,则码长K为3b。而输入字符集的熵(平均信 息 量)为 2.32b。因 此,哈 夫 曼 编 码 提 供 了1.25(3.0/2.4)的压缩率,该字符集编码效率达到了96.67(2.32/2.40)。为了说明代码扩展的应用,我们再举一个例子。现在学习的是第27页,共87页例2-6 3元素单字符集的哈夫曼编码(元素的概率分布不均匀)。该字符集的哈夫曼编码树见图2-4,其详细参数见表2-5(i=1,2,3)。表2-5 3元素单字符集哈夫曼编码的详细参数现在学习的是第28页,共87页图2-4 3元素单字符集的哈夫曼编码树现在学习的是第29页,共87页 该哈夫曼编码的平均码长是1.27 b;采用等长码则码长 为 2b。这 里,哈 夫 曼 编 码 提 供 的 压 缩 率 是1.57(2/1.27),比6元素单字符集的1.25大。但是,应用式(2-21)计算字符集的熵(平均信息量)为0.9443b,该字符集编码效率为74.35(0.9443/1.27),却比6元素单字符集的96.67小。这是因为6元素单字符集的信息熵(2.32b)与平均码长(2.4 b)的匹配比3元素单字符集的信息熵(0.9443 b)与平均码长(1.27 b)的匹配要好。现在学习的是第30页,共87页由此可见,由于有较多元素的字符集具有较大的信息熵(平均信息量),使得信息熵与平均码长的匹配更好些,所以具有更高的编码效率。为了提高编码效率或获得更大的压缩增益,必须重新定义信源字符集的元素,对字符集进行扩展。具体的方法是:每次从源字符集(3元素单字符集)中选择两个元素,排序形成扩展字符集(9元素双字符集)的新元素。如果假定元素是独立的,那么每个新元素的概率是各个元素独立概率之乘积。扩展字符集为XxiX,i=1,2,9,每个元素xi的编码序列通过上述哈夫曼过程获得,扩展后的9元素双字符集的参数如表2-6所示。可以算出扩展后的9元素双字符集的 压 缩 率 是 2.07(2/0.9671),编 码 效 率 是 97.64(0.9443/0.9671),比扩展前的3元素单字符集的压缩率1.57、编码效率74.35有明显的提高。现在学习的是第31页,共87页表2-6 3元素单字符集扩展为9元素双字符集现在学习的是第32页,共87页扩展码提供了一种利用码元关联性的技术。例如,英文中的相邻字母有很强的关联性。特别常见的字母对有:th re insh he e_de ed s_ng at r_te es d_下划线代表一个空格。类似地,常见的3元组合有:the and foring ion ess因此,一般不对单个字母采用哈夫曼编码,而是将字符集扩展为包含所有单字母、常见2字母和3字母组合的扩展字符集,然后再对扩展字符集进行哈夫曼编码,这样可以得到更高的编码效率。现在学习的是第33页,共87页例2-7 概率分布均匀的3元素单字符集的哈夫曼编码。该字符集的哈夫曼编码树见图2-5,其详细参数见表2-7(i=1,2,3)。图2-5 概率分布均匀的3元素单字符集的哈夫曼编码树现在学习的是第34页,共87页表2-7 概率分布均匀的3元素单字符集哈夫曼编码的详细参数现在学习的是第35页,共87页该哈夫曼编码的平均码长是1.667b,采用等长码时码 长 为 2b,则 哈 夫 曼 编 码 提 供 的 压 缩 率 是1.20(2/1.667)。应用式(2-21)计算字符集的熵(平均信息量)为1.585b,该字符集编码效率为95.08(1.585/1.667)。若把该3元素单字符集扩展为9元素双字符集,则扩展后的9元素双字符集的参数如表2-8所示。可算出扩展后的9元素双字符集的压缩率是1.24(2/1.611),编码效率是98.39(1.585/1.611),与扩展前的3元素单字符集的压缩率1.20、编码效率95.08相比较,有提高但提高的幅度不大。现在学习的是第36页,共87页表2-8 概率分布均匀的3元素单字符集扩展为9元素双字符集现在学习的是第37页,共87页 通过例2-6与例2-7的比较,我们可以得出以下两点结论:字符集的哈夫曼编码的编码效率和压缩率与字符集的概率分布有关,概率分布不均匀,编码效率低,压缩率高;概率分布均匀,编码效率高,压缩率低。扩展后的字符集的编码效率和压缩率提高的幅度与原字符集的概率分布有关,概率分布不均匀,编码效率和压缩率提高的幅度大;概率分布均匀,编码效率和压缩率提高的幅度小。故哈夫曼编码适合用于概率分布不均匀的信源。现在学习的是第38页,共87页哈夫曼编码方法是一种不等长最佳编码方法,此处的最佳是指:对于相同概率分布的信源而言,它的平均码长比其他任何一种有效编码方法的平均码长都短。现在学习的是第39页,共87页 2.3 限失真信源编码限失真信源编码2.3.1 基本原理若有一个离散、无记忆、平稳信源,其信息率失真函数为R(D),则当通信系统中实际信息率RR(D)时,只要信源序列L足够长(L),一定存在一种编码方式C使其译码以后的失真小于或等于D+,且为任意小的正数(0),反之,若RR(D),则无论用什么编码方式,其译码失真必大于D。现在学习的是第40页,共87页与实现无失真信源编码的方法类似,实现限失真信源编码的方法也分为两大类型:一类为适应信源方式,即首先承认信源的实际客观概率统计特性,再寻找适应这类概率统计特性的编码方法。比如充分考虑并利用信源消息序列的各个消息变量(或各取样值)之间的统计关联(记忆特性)的矢量量化编码;另一类是改造信源方式,其着眼点首先是改造信源的客观统计特性,即解除实际信源消息序列的各个消息(或各取样值)之间的统计关联相关特性,将有记忆信源改造为无记忆信源,甚至还可以进一步将无记忆信源变换为理想最大熵等概率信源。第一类:矢量量化编码,第二类:预测编码与变换编码。现在学习的是第41页,共87页2.3.2 连续信源的限失真信源编码1.标量量化标量量化与连续信源的模拟信号数字化紧密相连。数字化是当今通信技术发展的必然趋势,也是信息化社会的基础。常见的电话、传真、电视等信号都是连续的模拟信号,但是为了传输、处理、存储与交换的方便,同时为了提高通信质量以及设备生产、维护的方便,通常需要对模拟信号数字化。下面以电话的语音信号为例,简单介绍数字化的基本原理。现在学习的是第42页,共87页PCM编码过程编码过程PCM:脉冲编码调制,主要用于语音信号的预处理,分为三大步骤:取样量化编码现在学习的是第43页,共87页语音信号的频带为300-3400Hz(声波),通过话筒后,声波转化为电信号,频率不变。(实际频带可达20000Hz,通过滤波器加以限制)取样:根据取样定理,上述语音信号可以由离散信号转变为数字信号,取样频率一般为8000Hz,即每秒钟取样8000次。原来的模拟语音信号转变为横轴离散的抽样信号。现在学习的是第44页,共87页量化:被抽样后的语音信号,其幅度依然为连续值,为了转变为适宜在数字系统中传输的信号,需要进行离散化,也就是量化过程。均匀量化:量化阶相等非均匀量化:量化阶不等编码:量化后,原有的每个样点值由一串数字序列表示,量化越精确,序列长度越长。目前用8位bit表示一个样点。每秒的bit数则为:?现在学习的是第45页,共87页现在学习的是第46页,共87页语音信号数字化的三个基本步骤:取样、量化与编码,分别完成对模拟信号横向时间轴的离散化、纵向取值域的离散化,以及将已被离散化的数值编成相应的0、1序列的码组。第二个基本步骤量化就是一维的标量量化,属于典型的限失真编码。量化的实质是把时间上离散的抽样值的取值范围按照一定的规则从无限多个数值转换为有限多个数值,即抽样值只能取有限多个数值中的一个。为了简化,设量化电平数为l=23=8,对以上三个基本步骤用比较形象的图形表示,如图2-6所示。现在学习的是第47页,共87页在如图2-6所示的模拟信号数字化过程中,图(a)表示语音信源输出的原始连续模拟信号x(t);图(b)表示对原始模拟信号按均匀间隔Ts抽样后横向离散化的连续样值序列x(kTs),其取值是07电平区间内的某一个值,其取值数为无限多个;图(c)表示对已横向离散化的连续样值再经过纵向离散化的量化处理后的量化序列值xl(kTs),量化是按照“四舍五入”的规则进行的,量化后的样值在07的8个整数值中选取某一个值,其取值数为有限多个(此处是8个)。例如当k=0时,x(0)0.3,它小于0.5,量化后的xl(0)0电平;当k1时,x(Ts)1.9,超过1.5小于2.5,量化后的xl(Ts)2电平,依次类推,显然量化属于限失真编码;图(d)表示对每个量化序列值进行对应的二进制编码。现在学习的是第48页,共87页8电平可以采用3位二进制编码来表示,例如,当k0时,0量化电平可以编成3位二进制码组为000,当k1时,2量化电平可以编成010,依次类推;图(e)表示图(c)中的量化序列值与图(b)中相应的抽样序列值之间的量化误差序列值Ek=xl(kTs)-x(kTs)。例如当k0时,量化值0与抽样值0.3之间的量化误差E0=xl(0)-x(0)=0-0.3=-0.3,当k1时,量化误差E1xl(Ts)-x(Ts)21.90.1,依次类推。现在学习的是第49页,共87页图2-6 模拟信号数字化过程原理示意图现在学习的是第50页,共87页图2-6 模拟信号数字化过程原理示意图现在学习的是第51页,共87页图2-15 量化的基本过程 现在学习的是第52页,共87页 当输入信号x的幅度落在xl和xl+1之间时,量化器的输出为yl,其表达式为 yl=Qxlxxl+1 l=1,2,L (2-72)式中,yl称为量化电平或重建电平,xl称为分层电平。分层电平之间的间隔l=xl+1-xl称为量化间隔,也称为量阶或阶距。量化间隔相等时称为均匀量化,不相等时称为非均匀量化。现在学习的是第53页,共87页量化器输出与输入之间的关系称为量化特性,可用量化特性曲线来形象地表示。一个理想的线性系统,其输出/输入特性为一条直线,而量化器的输出/输入特性是阶梯形曲线。阶梯面之间的距离为阶距。均匀量化器的特性曲线是等阶距的,非均匀量化器的特性曲线是不等阶距的。根据阶梯面的位置,量化特性曲线又可分为中升型和中平型。各种量化特性曲线如图2-16所示。现在学习的是第54页,共87页 图2-16 各种量化特性曲线(a)非均匀中升型;(b)均匀中升型;现在学习的是第55页,共87页 图2-16 各种量化特性曲线 (c)非均匀中平型;(d)均匀中平型 现在学习的是第56页,共87页量化器的输入是连续值,输出是离散值,所以输入与输出之间必然存在着误差。由于这种误差是因量化而产生的,所以称为量化误差。定义量化误差为量化器的输出与输入之差,则第k个样值的量化误差为 q(kTs)=xl(kTs)-x(kTs)(2-73)图2-17给出了量化误差q(kTs)的示意图。现在学习的是第57页,共87页图2-17 量化误差q(kTs)的示意图 现在学习的是第58页,共87页图中,连续曲线x(t)表示原始模拟信号;x(kTs)表示第k个样值,记为“”;xl(kTs)表示第k个样值的量化值,记为“”;q(kTs)表示第k个样值的量化误差值。如果不考虑具体样值,式(2-73)可以简化为 q=yl-x=Q(x)-x (2-74)量化误差q的变化规律是由x的取值规律所决定的。当x是确定性信号时,q是一个确定性函数;当x是随机信号时,q是一个随机变量。量化误差的存在对信号的解调必定会产生影响,这种影响会引起信号的失真,所以量化为限失真编码。现在学习的是第59页,共87页由此看来量化误差对信号的影响是一种干扰,所以通常又把量化误差称为量化噪声。量化噪声是正、负交变的随机变量,其平均值为零,所以量化噪声对信号的影响要用平均功率来度量。量化噪声的平均功率用均方误差表示。设输入信号x的幅度概率密度为px(x),量化噪声的平均功率为(2-75)现在学习的是第60页,共87页 由于有L个量化间隔,因此可以把积分区域分割成L个区间,上式可写成 式(2-76)是计算量化噪声平均功率的基本公式。在给定消息源的情况下,px(x)是已知的,因此量化噪声的平均功率与量化间隔的大小和分割方式有关。量化理论就是研究如何使量化噪声的平均功率最小或者符合一定的规律。(2-76)现在学习的是第61页,共87页与其他电子系统类似,通常用量化器输出端的信号噪声功率比(简称量化信噪比,通常用符号SNR表示)来衡量量化器的质量,量化信噪比SNR的表达式为式中,E表示求统计平均,Sq表示量化器输出的信号功率,Nq表示量化噪声功率。(2-77)现在学习的是第62页,共87页(4)非均匀量化。量化间隔不相等的量化称为非均匀量化。从理论分析的角度看,非均匀量化可认为是先对信号进行非线性变换,然后再进行均匀量化。具体过程为:在发送端对输入信号先进行一次非线性压缩变换z=f(x),然后对z进行均匀量化、编码并发送出去;在接收端,对接收到的信号解码,得到量化电平,再对量化电平进行一次相反的非线性扩张变换f-1(x),才能恢复原始信号,如图2-19所示。在实际实现非均匀量化时,通常是把瞬时压缩与编码结合起来一次实现非线性编码。现在学习的是第63页,共87页图2-19 非均匀量化原理框图现在学习的是第64页,共87页由于f(x)和f-1(x)分别具有把信号幅度范围压缩与扩张的作用,所以f(x)称为压缩特性,f-1(x)称为扩张特性。为了形象地说明压缩与扩张的原理,可用图2-20的图形来解释压缩与扩张处理的过程。为了方便,将扩张特性的坐标改为垂直输入和水平输出。因此,表面上两个曲线相同,实际上两个特性曲线正好是互补的。现在学习的是第65页,共87页 在图2-20中,输入有两个样值,A1=2,B1=40,设均匀量化器间距=1,此时最大量化误差为0.5。如果对样值直接进行均匀量化,样值与最大量化误差之比分别为4和80,但是若经过压缩处理,由图2-20可知,两个样值对应的输出分别为A2=10,B2=40,此时样值与最大量化误差之比分别为20和80,显然提高了弱信号的质量,同时样值的动态范围也明显缩小。在接收端,量化值通过扩张处理后,输出又分别还原为A3=2,B3=40,并使动态范围扩大到原来的范围。现在学习的是第66页,共87页图2-20 压缩与扩张过程现在学习的是第67页,共87页考虑到实际量化器输入的工作动态范围大约为45 dB,按照在动态范围内量化器的信噪比尽可能保持平稳的要求,可设计量化器使之具有对数量化特性。这样在大信号电平时信噪比相对于均匀量化要低一些,在小信号电平时信噪比相对于均匀量化则明显提高。对于对数压缩特性,其量化输出信噪比SNR始终可以保持为一常数。在实际应用中,理想对数量化是无法实现的,因为它要求当x0时f(x)-,所以在工程设计时一般是将上述理想对数特性在x0的小信号段进行适当的修正,以便于实现。现在学习的是第68页,共87页 基于对语音信号的大量统计和研究,国际电话电报咨询委员会(CCITT)建议采用两种近似对数压缩特性:律与A律。其中律是较早的一种,它是美国与日本采用的24路系列的近似对数压缩特性;而另一种A律是稍晚由欧洲国家提出的,它是欧洲和我国采用的32路系列的近似对数压缩特性。不管是律还是A律,它们都是具有近似对数特性且通过原点呈中心对称的曲线。为了简化,通常只画出第一象限图形。现在学习的是第69页,共87页 律对数压缩特性。为了简明统一,将量化器输入信号xi对量化器最大量化电平V进行归一化处理,则量化器满载电压的归一化值为1,量化器输入信号的归一化值为律对数压缩特性定义为 (2-100)(2-101)现在学习的是第70页,共87页式中,为压缩系数,=0时无压缩,越大压缩效果越明显,在国际标准中取=255。在=255的条件下,当量化电平数L=256即编码位数n=8时,与均匀量化相比较,律对数压缩特性对小信号的信噪比改善值为33.5dB。律对数压缩特性曲线如图2-22(a)所示。现在学习的是第71页,共87页图2-22 律与A律对数压缩特性曲线 (a)律;(b)A律现在学习的是第72页,共87页 A律对数压缩特性。同样,对量化器输入信号进行归一化处理后,A律对数压缩特性定义为(2-102)现在学习的是第73页,共87页式中,A为压缩系数,A=0时无压缩,A越大压缩效果越明显,在国际标准中取A=87.6。由式(2-102)可知,在0 x1/A范围内,f(x)是线性函数,对应一段直线,相当于均匀量化特性;在1/Ax1范围内,f(x)是对数函数,对应一段对数曲线,为非均匀量化特性。在A=87.6的条件下,当量化电平数L=256即编码位数n=8时,与均匀量化相比较,A律对数压缩特性对小信号的信噪比改善值为24dB。A律对数压缩特性曲线如图2-22(b)所示。对数压缩特性的折线近似。现在学习的是第74页,共87页早期的律和A律对数压缩特性是用模拟电路来实现的,其精度、一致性以及保证压缩与扩张特性的匹配等都受到限制。后来采用折线来近似光滑曲线,可用数字技术实现。随着大规模、超大规模数字集成电路的出现,其质量性能等得到了进一步的改善。采用折线法逼近律和A律已形成国际标准。律对数压缩特性采用15折线来近似,如图2-23所示,图中只画出了输入信号为正时的情形。横坐标表示输入信号幅度的归一化值x,其范围为(0,1),被不均匀地划分为8个区间。它的7个划分点的分母均为28-1,分子依次为2n-1(n=1,2,7)。纵坐标表示输出信号幅度的归一化值z,其范围也为(0,1),但被均匀地划分为8个区间。现在学习的是第75页,共87页这样,以横坐标的划分点作为横坐标,以纵坐标的划分点作为纵坐标,两者一一对应构成折线的7个拐点,分别为(1/255,1/8)、(3/255,2/8)、(7/255,3/8)、(15/255,4/8)、(31/255,5/8)、(63/255,6/8)和(127/255,7/8)。用直线顺序连接原点和这7个拐点并最后连接到(1,1)点,就可以作出由8段直线连接而成的一条折线。因为压缩特性关于原点中心对称,所以当输入信号为负时,负方向也有8个线段(图中未画出)。由于负方向第一段与正方向第一段斜率相同,因此共有15条线段。这条折线被称为律15折线,与=255的对数压缩特性很接近。显然,在第一段内与=255的对数压缩特性公式(2-101)是相等的。现在学习的是第76页,共87页图2-23 律15折线现在学习的是第77页,共87页A律对数压缩特性采用13折线法来近似,如图2-24所示,图中只画出了输入信号为正时的情形。横坐标表示输入信号幅度的归一化值x,其范围为(0,1),被不均匀地划分为8个区间,从右向左每个区间长度以1/2倍递减。其划分方法是:取区间(0,1)的中点将其分为左、右两个12区间,右12区间为第8区间;取左12区间的中点将其分为左、右两个14区间,右14区间为第7区间;取左14区间的中点将其分为左、右两个18区间,右18区间为第6区间;依次下去,直到左1128区间为第1区间。现在学习的是第78页,共87页纵坐标表示输出信号幅度的归一化值z,其范围也为(0,1),但被均匀地划分为8个区间。这样,以横坐标的划分点作为横坐标,以纵坐标的划分点作为纵坐标,两者一一对应构成折线的 7个 拐 点,分 别 为(1/128,1/8)、(1/64,2/8)、(1/32,3/8)、(1/16,4/8)、(1/8,5/8)、(1/4,6/8)和(1/2,7/8)。用直线顺序连接原点和这7个拐点并最后连接到(1,1)点,就可以作出由8段直线连接而成的一条折线。由于第1、2区间内的直线斜率相等,所以实际上只有7段直线。因为压缩特性关于原点中心对称,所以当输入信号为负时,负方向也有7条线段(图中未画出)。由于负方向第一段与正方向第一段斜率相同,因此,共有13条线段。这条折线被称为A律13折线,与A=87.6的对数压缩特性很接近。显然,在第一段内与A=87.6的对数压缩特性公式(2-102)是相等的。现在学习的是第79页,共87页图2-24 A律13折线现在学习的是第80页,共87页3)编码把量化后的信号电平值转换成二进制码的过程称为编码,其逆过程称为译码。(1)二进制码的码型。码型是指二进制码的各码组与量化电平的对应关系,对应关系不同,码型不同。常见的二进制码有自然二进制码NBC(Natrual Binary Code)、折叠二进制码FBC(Folded Binary Code)和格雷二进制码GBC(Gray Binary Code)。表2-14列出了用4位码表示16个量化级时三种码的编码规律。现在学习的是第81页,共87页表2-14 三种4位二进制码的编码规律 现在学习的是第82页,共87页 自然二进制码NBC。自然二进制码就是一般的十进制正整数的二进制表示。在自然二进制码中,每位码有一固定的权值,设n位码字a1a2an,其各位的权值依次是2n-1、2n-2、20。对于双极性的量化电平,设a1为极性码,a1=1表示幅值为正;a1=0表示幅值为负。设a2a3an为幅度码,当幅值为正时,幅度码的大小就代表了量化电平的大小;但当幅值为负时,幅度码的大小与量化电平绝对值的大小却成反比。自然二进制码简单易记,但对于双极性信号而言,不如折叠二进制码方便。现在学习的是第83页,共87页 折叠二进制码FBC。在折叠二进制码中,a1仍为极性码,a2a3an表示幅度的绝对值。幅值为正的幅度码编码与自然二进制码相同,但幅值为负的幅度码是由幅值为正的幅度码(上半部分)对折而成的,因此得名为折叠码。从表2-14可知,在折叠码中,只要量化值的绝对值相同,则其幅度码也相同,也就是说双极性信号可以采用单极性信号的编码方法来实现,从而大大地简单化了编码过程。折叠二进制码的另一个特点是:当传输过程中出现误码时,对小信号影响较小,对大信号影响较大。现在学习的是第84页,共87页 例如误码发生在小信号,假设使1000误为0000,由表2-14可知,对于自然码误差为8个量化级(8与0),而对于折叠码误差只有1个量化级(8与7)。但如果误码发生在大信号,假设使1110误为0111,对于自然码误差为7个量化级(14与7),而对于折叠码误差为14个量化级(14与0)。由于语音信号小幅度出现的概率比大幅度出现的概率大,从统计的观点看,折叠码可以减少均方误差功率,所以对双极性信号进行编码多采用折叠二进制码。现在学习的是第85页,共87页 格雷二进制码GBC。在格雷二进制码中,a1仍为极性码,a2a3an为幅度码。格雷码的正负幅度码也有折叠关系,但幅度码的大小与量化电平的绝对值之间却没有正常的权值关系。格雷码的特点是任何相邻的码组,只有一位发生变化,其传输的可靠性较高。现在学习的是第86页,共87页 (2)PCM编码规则。语音信号的带宽为3003400 Hz,抽样速率fs=8 kHz,对每个抽样值进行A律或律对数压缩非均匀量化及非线性编码,每个样值用8位二进制代码表示,这样,每路标准话路的比特率为64 kb/s,而这8位二进制代码是按CCITT建议的电话信号的PCM编码规则来定义的。现在学习的是第87页,共87页

    注意事项

    本文(第2章信源编码技术优秀PPT.ppt)为本站会员(石***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开