“大气科学、海洋科学、水文科学”简介、含义、起源、历史与发展.pdf
-
资源ID:74080484
资源大小:1.72MB
全文页数:22页
- 资源格式: PDF
下载积分:11.9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
“大气科学、海洋科学、水文科学”简介、含义、起源、历史与发展.pdf
最新资料推荐 最新精品资料整理推荐,更新于二二一年四月十二日 2021 年 4 月 12 日星期一 19:51:44 大气科学 大气科学是研究大气的各种现象(包括人类活动对它的影响),这些现象的演变规律,以及如何利用这些规律为人类服务的一门学科。大气科学是地球科学的一个组成部分。它的研究对象主要是覆盖整个地球的大气圈。此外,还研究太阳系其他行星的大气。大气圈,特别是地球表面的低层大气,以及和它相关的水圈、岩石圈、生物圈是人类赖以生存的主要环境。大气的各种现象及其变化过程,既可带来雨泽和温暖,造福人类;也可造成酷暑严寒,以至旱涝风雹等灾害,直接影响人类的生产和安全。人类在生产和生活的过程中,也不断地影响着自然环境(包括大气)。如何认识大气中的各种现象,如何及时而又正确地预报未来的天气、气候,并对不利的天气、气候条件进行人工调节和防御,是人类自古以来一直不断探索的领域。随着科学技术和生产的迅速发展,大气科学在国民经济和社会生活中的巨大作用日益显著,其研究领域已经越出通常所称的气象学的范围。本文仅对大气科学的研究对象、研究特点、学科分支、同其他学科的关系以及发展状况作一概括描述,大气科学丰富的内容和悠久的历史则由本卷其他有关条目介绍。研 究 对 象 覆盖整个地球的大气,质量约 5.31021克,约占地球总质量的百万分之一。由于地心引力的作用,大气质量的 90聚集在离地表 15 公里高度以下的大气层内,99.9在 48 公里以内。2000 公里高度以上,大气极其稀薄,逐渐向星际空间过渡,无明显上界。大气本身的可压缩性、太阳辐射、地球的形状和它的重力、地球的公转和自转、地球表面的海陆分布和地形起伏、地球的演化和地球生态系统等是造成地球大气特定组分、特定结构和特定运动状态的主要自然条件。人类活动及其对生态因素所起的作用,是影响大气组分、大气结构和大气运动的人为条件。地球大气的组分以氮、氧、氩为主,它们占大气总体积的 99.96。其他气体含量甚微,有二氧化碳、氪、氖、氦、甲烷、氢、一氧化碳、氙、臭氧、氡、水汽等。大气中还悬浮着水滴、冰晶、尘埃、孢子、花粉等液态、固态微粒。太阳系的九大行星,都存在大气(见行星大气)。地球大气中的氧气是人类赖以生存的物质基础,氧气的出现及其含量的变化,同地球的形成过程和生物的演化过程密切相关(见地球大气演化)。大气中的水汽来自江河、湖泊和海洋表面的蒸发,植物的散发,以及其他含水物质的蒸发。在夏季湿热处(如高温的洋面或森林),大气中水汽含量的体积比可达 4,而冬季干寒处(如极地),则低于 0.01。水汽随着大气温度发生相变,成云致雨,成为淡水的主要资源。水的相变和水文循环过程不仅把大气圈同水圈、岩石圈、生物圈紧密地联系在一起,而且对大气运动的能量转换和变化有重要影响(见大气环流的能量平衡和转换)。大气中的二氧化碳含量受植物的光合作用、动物的呼吸作用、含碳物质的燃烧以及海水对二氧化碳的吸收作用所影响,在工业发展、化石燃料(如煤、石油、天然气)燃量增加、森林覆盖面积减少的情况下,已观测到二氧化碳含量与年俱增。大气中本来没有或极少存在的如甲烷、一氧化二氮等气体,由于人类活动的影响,近年来它们的含量也迅速增加。这些有温室效应的气体含量的变化对大气温度的重要影响,已成为研究现代气候变化的一个前沿课题。大气中臭氧的含量很少,即使在离地表2030 公里的浓度最大处,其含量也不到这层大气的十万分之一。然而大气臭氧层能够大最新资料推荐 最新精品资料整理推荐,更新于二二一年四月十二日 2021 年 4 月 12 日星期一 19:51:44 量吸收太阳紫外辐射中对生命有害的部分,起着对人类十分重要的保护作用。另外,大气臭氧层的存在,对平流层大气的温度也有重要作用。由于人类活动对高空光化学过程的影响会引起臭氧含量的变化,人类活动对臭氧含量影响的研究,已成为医学界和气象学界共同关注的问题。地球大气的密度、温度、压力、组分和电磁特性等都随高度而变化,具有多层次的结构特征。大气的密度和压力一般随高度按指数律递减;温度、组分和电磁特性随高度的变化不同,按各自的变化特征可分为若干层次。地球大气按温度随高度的变化,由地表向上,依次分为对流层、平流层、中层和热层。对流层紧邻地表,其中温度随高度增加而降低,平均每升高 1 公里约减少 6.5,至对流层顶温度降到极小值。对流层中的对流运动显著,是热量铅直输送的主要控制因子,云和降水主要发生在这一层。对流层顶的高度在赤道地区约 18 公里,中纬度地区约 12 公里,极地地区约 8 公里。平流层位于对流层之上,平流层顶离地表约 50 公里。平流层中的臭氧层吸收太阳紫外辐射,是使这层大气温度随高度增加而上升的主要因子。这层大气温度层结非常稳定,其中的热量铅直输送以辐射传输为主。中层位于平流层之上,中层顶离地表约 85 公里,层内温度随高度增加而下降。热层位于中层之上,热层顶离地表约 500 公里。这层大气由于吸收太阳紫外辐射,温度随高度增加而上升。热层顶以上为外逸层,那里大气已极稀薄,每立方厘米不到 1019个原子(海平面处每立方厘米约 1019个原子)。地球大气按组分状况可分为匀和层和非匀和层。离地表约 85 公里高度以下为匀和层,层内的大气组分比例相同,平均分子量为常数。约 110 公里高度以上为非匀和层,层内大气组分按重力分离后,轻的在上,重的在下,平均分子量随高度增加而减小。离地表 85110公里为匀和层到非匀和层的过渡层。地球大气按电磁特性可分为中性层、电离层和磁层。由地表向上到 60 公里高度为中性层。离地表 60 公里到 5001000 公里高度为电离层。离地表 5001000 公里以上为磁层。电离层能反射无线电波,对电波通信极为重要。磁层是地球大气的最外层,磁层顶是太阳风动能密度和地磁场能密度相平衡的曲面。地球大气的运动非常复杂。地球的自转和公转运动以及地球自转轴的方向产生了地球上的昼夜交替、四季变化和温度自赤道向两极递减的规律。由于海陆分布和地貌等的不均匀性,地表的温度并不完全按纬圈带分布,而呈现出非带状的不均匀分布。大气的温度、压力和密度之间有密切的关系。大气压力分布(即气压场)的不均匀会导致大气的运动,大气的运动又会引起气压场的重新调整。大气的水平辐合运动和辐散运动会引起大气在铅直方向的上升运动和下沉运动,大气的铅直运动也会影响大气的水平运动。大气通过机械运动、热运动等多种运动形式进行水平方向和铅直方向的物质和能量的传输和转换。整个大气圈通过各种机制相互紧密地联系在一起,形成了空间尺度小至几米以下、大至几千公里甚至上万公里,时间尺度短至几秒、长至数十天或更长时间的多种大气运动系统。在影响大气运动的因素中,人为的因素在变化着(如工农业生产引起大气中有温室效应的气体增加,大面积森林砍伐等),自然的因素也在变化着(如火山爆发等引起辐射能的变化,地球自转轴方向的变化等)。有些变化是有规律的,有些变化是无规则的。大气的运动也就呈现出既有规律性又有随机性的特征。大气科学的研究对象地球大气,无论它的组分,它的结构,还是它的运动,都存在着确定性和不确定性两个方面。这正是大气科学研究复杂性的一面。天气变化、气候异常以及大气质量变化同人类的生活和生产活动休戚相关,正确的天气预报、气候预测以及改善大气污染情况对人们具有极大的迫切性,这正是大气科学研究为人类紧迫所需的应用性的一面。这种艰巨而有意义的科学事业不断吸引着人们去探索地球大气的奥秘。最新资料推荐 最新精品资料整理推荐,更新于二二一年四月十二日 2021 年 4 月 12 日星期一 19:51:44 研 究 特 点 大气科学研究不能仅限于大气圈 在地球表层,除大气圈以外,还存在着水圈、冰雪圈、岩石圈和生物圈,这些圈层组成一个综合系统。大气圈中发生的各种变化都受其他圈层的影响;反之,大气圈也影响着其他圈层的变化。研究大气运动的能源,大气中的物质循环、能量转换和变化过程,大气环流及天气、气候的分布和变化,都必须考虑大气圈同水圈、冰雪圈、岩石圈、生物圈之间的相互影响和相互作用。如:大气运动的根本能源是太阳辐射。但大气直接吸收的太阳辐射能仅占到达大气上界辐射能的 19,大部分太阳辐射能(约 51)是被地表吸收后,再通过感热通量、潜热通量和辐射通量方式供给大气的。这些通量受近地层大气状态、地表的状态(如海洋、陆地、植被、冰雪)及其热力特性等所控制。又如:大气的组分及其物理和化学性质,除受大气内部物理、化学过程的影响外,还受水圈、冰雪圈、岩石圈和生物圈的影响。海洋通过水的相变、水汽通量和感热通量过程,植被通过光合作用和散发过程,土壤通过水汽通量和感热通量过程等影响大气的温度、水汽和二氧化碳等的含量。火山爆发和人类活动等影响大气中气溶胶含量、大气成分和辐射过程等。再如:地形起伏和植被状况对气流的摩擦作用,影响着地表和大气之间的动量交换(见大气角动量平衡);大地形对气流的强迫绕流和强迫爬升及下滑作用,影响着大气的环流特征;海陆分布的不均匀性,影响着大气环流和天气、气候的非带状分布和南北半球的非对称分布。大自然是大气科学研究的实验基地 大气圈不是孤立的。在空间和时间上具有宽广尺度谱的各种大气现象也不是孤立的。它们种类繁多,相互叠加又相互影响。即使同一类现象,其结构也不尽相同。影响这些大气现象的因素非常复杂,人类至今还很难在实验室内用人工控制的方法对它们进行完整的实验和研究。只能以大自然为实验室,组织从局地到全球的气象观测网,运用多种观测手段(如气象卫星、气象雷达、飞机等)对大气现象进行长期的连续的观测,特别是定量的观测,以获取资料;对有关气候现象还需搜集地质考查、考古发掘和历史文献等资料。大气科学家们通过对大量资料的分析和综合,提炼出量与量之间的定性的或定量的关系,归纳出典型现象的模式特征,如锋面、气旋、大气长波等,在模式的基础上运用已知的物理学和化学的基本原理以及数学工具和计算技术进行理论上的演绎和模拟,导出新的结论。理论模式是否合理,还需回到大自然的实验室中进行检验,有些理论模式还有待于新的观测资料加以证实。经实践检验的理论才可指导实践(如指导天气预报等)。大气科学正是通过大自然这个实验室,遵循观测(实践)理论观测(实践)这个基本法则不断发展,不断为社会的生产和人类的生活服务的。国际合作是推动大气科学发展的必要途径 全球大气在不停地运动着,而且是一个整体,一个地区的大气运动受着其他地区大气运动的影响,不同尺度的大气运动又相互作用着,其变化之快、变化范围之广、变化形式之多,是自然界突出的。为掌握大气运动变化快、范围广、形式多的特征,就必须对大气进行连续的、高频率的、全球性的观测。为掌握全球大气的各种信息,必须在站网布局、观测项目、资料处理规范、信息传输等方面作出统一规划和求得协调。全球数以万计的为天气预报进行观测的气象站,要在相同的时间、用接近相同的仪器和观测方法,在全球各地进行同步观测;由气象卫星、气象雷达等探测手段观测的大量资料,凡用于天气预报业务的资料还要作同步处理。这些资料都要在观测完毕最新资料推荐 最新精品资料整理推荐,更新于二二一年四月十二日 2021 年 4 月 12 日星期一 19:51:44 后的短短数十分钟内迅速集中到世界气象中心和各国的气象中心。再加上为数更多的水文气象站的观测资料。资料的范围之大、数量之多、传递之快是惊人的,这是自然科学中的奇观。这一切只有通过国际间的密切合作才能实现。大气科学研究中的这种高度分散(观测站点)、高度集中(资料迅速集中)、高度协调(观测站址、观测仪器和方法)、高度合作(国际间合作)的特点,是其他学科无法比拟的。学 科 分 支 大气科学的分支学科主要有大气探测、气候学、天气学、动力气象学、大气物理学、大气化学、人工影响天气、应用气象学等。大气探测是一门研究探测地球大气中各种现象的方法和手段的学科。按探测范围和探测手段划分,大气探测有地面气象观测、高空气象观测、大气遥感、气象雷达、气象卫星等次一层分支。探测手段的飞跃往往带来以往难以预计的重大发现,在大气科学的发展进程中,大气探测起了十分重要的作用。气候学是一门研究气候的特征、形成和演变以及气候同人类活动相互关系的学科。研究内容主要包括气候特征、气候分类、气候区划、气候成因、气候变化、气候与人类活动的关系、气候预报和应用气候等。20 世纪 70 年代以来,全世界发生几次气候异常,不少地区粮食产量大幅度下降,引起世人对气候的严重关注。工业生产引起大气中二氧化碳和其他有温室效应的气体(如甲烷、一氧化二氮等)含量逐年增加,若干年后它们对地球气候将发生什么影响,也是非常令人关切的问题。电子计算机的采用,促进了对气候变化物理因子和气候模拟的研究,气候预测已不再是虚无缥缈的难题,而已成为一个具有战略意义的课题了。天气学是一门研究大气中各种天气现象发生发展的规律以及如何应用这些规律来制作天气预报的学科。研究内容主要包括天气现象、天气系统、天气分析和天气预报等。气候学和天气学研究的成果,不但为大气科学提供丰富的研究课题,而且还直接为国民经济服务。动力气象学是一门应用物理学和流体力学定律及数学方法,研究大气运动的动力和热力过程及其相互关系的学科。研究内容主要包括大气热力学、大气动力学、大气环流、大气湍流、数值天气预报和数值模拟等。动力气象学的发展对更深刻地认识大气运动的机理、掌握天气和气候变化的规律有十分重要的作用,它是大气科学的理论基础学科。大气物理学是一门研究大气的物理现象、物理过程及其演变规律的学科。研究内容主要包括云和降水物理学、大气光学、大气电学、大气声学、大气辐射学等。大气物理学也是大气科学中的理论基础学科。50 年代以后,也有人把动力气象学包括在内都称为大气物理学。大气化学是一门研究大气组成和大气化学过程的学科。研究内容主要包括大气微量气体及其循环、大气气溶胶、大气放射性物质和降水化学等。人工影响天气,研究如何通过影响云和降水的微物理过程使某些大气现象、大气过程发生改变的技术和方法。如人工降水、人工防雹、人工消雾等。人工影响天气是人类改造自然的一个组成部分。应用气象学是将气象学的原理、方法和成果应用于农业、水文、航海、航空、军事、医疗等方面,同各个专业学科相结合而形成的边缘性学科,也是充分开发利用气候资源的重要领域。大气科学的各个分支学科彼此不是孤立的,如天气学和气候学与动力气象学相结合,产生了天气动力学和物理动力气候学。探测手段的不断革新和痕量化学分析技术的发展,推动了对大气的物理性质和化学性质的分析研究,促进了大气化学的发展。尤其是大气中二氧化最新资料推荐 最新精品资料整理推荐,更新于二二一年四月十二日 2021 年 4 月 12 日星期一 19:51:44 碳和甲烷等微量气体对气候影响的日益显著,以及大气污染和酸雨问题的出现,不仅使人们更加认识到大气化学在大气科学中的重要性,而且随着研究的深入,更认识到大气化学过程和大气物理过程的相互作用,从而促进了这两个分支学科的相互结合。气象卫星探测与天气分析相结合产生了卫星气象学,气象雷达探测与云和降水物理学相结合产生了雷达气象学。大气科学学科分支又分又合的过程,反映了大气科学的不断深入发展。大气科学在很长的历史发展过程中,先是以气候学、天气学、大气的热力学和动力学问题以及大气中的物理现象(如电象、光象、声象)和比较一般的化学现象等方面为主要研究内容,传统称之为“气象学”(meteor-ology,此词源于希腊文 meteoros 和 logos,意为“上空的”和“推理”)。随着现代科学技术在气象学中的应用,其研究范畴日益扩展,因而从 20 世纪 60年代以来,“大气科学”术语的应用日益广泛,它大大扩充了传统气象学的研究内容。近年来,由于人类越来越认识到大气圈与水圈、冰雪圈、岩石圈和生物圈之间相互作用和相互影响的重要性,要了解大气变化过程就不能不深入到其他圈层变化过程的研究。因此,大气科学的研究内容越来越广泛,与其他学科之间的相互渗透也越来越深入。与其他学科的关系 大气科学依据物理学和化学的基本原理,运用各种技术手段和数学工具,研究大气的物理和化学特性、大气运动的各种能量及其转换过程、各种天气气候现象及其演变过程、天气以及其他某些现象的预报方法、影响某些天气过程的技术措施、大气现象各种信息的观测和获取以及传递的方法和手段等。和其他学科一样,大气科学是同许多学科相互渗透、相互借鉴的。诸如:研究大气运动,需同流体力学、热力学、数学密切合作;研究太阳辐射以及太阳扰动在大气中引起的各种机制,需同高层大气物理学、太阳物理学和空间物理学密切合作;研究水分循环、海洋和大气的相互作用,需同水文科学、海洋科学密切合作;研究地球大气的演化、地球气候的演变,需同地球化学、地质学、冰川学、海洋科学、生物学和生态学密切合作;研究大气化学、大气污染,需同化学、物理学、生物学和生态学密切合作;研究大气问题的数值模拟、数值天气预报等,需同计算数学等密切合作;研究大气探测的手段和方法,需同有关的技术科学密切合作;在大气探测、天气预报等自动化的进程中,大气科学还不断同信息理论、系统工程等科学技术领域密切合作。在相互合作和相互渗透的过程中,大气科学不断汲取其他学科的养料;大气科学特定的要求又不断为其他学科开辟新的研究前沿,不断丰富着其他学科的内容。发 展 概 略 大气科学是一门古老的学科。有关天气、气候知识起源于长久的生产劳动和社会生活的经验之中。早在渔猎时代和农业时代,人们就逐渐积累起有关天气、气候变化的知识。中国在公元前 2 世纪见于淮南子天文训和逸周书时训解的二十四节气和七十二候,就是从生产和生活实践中总结出来的,它又被用来指导农事活动。后来的工农业生产活动,军事活动,航海、航空、航天活动,以及对海洋、冰川、高原、空间等考察的发展,都为大气科学不断提出新的课题,推动着大气科学的发展。最新资料推荐 最新精品资料整理推荐,更新于二二一年四月十二日 2021 年 4 月 12 日星期一 19:51:44 17 世纪以前,人们对大气以及大气中各种现象的认识是直觉的、经验性的。1718 世纪,由于物理学和化学的发展,温度、气压、风和湿度等测量仪器的陆续发明,氮、氧等元素的相继发现,为人类定量地认识大气的组成、大气的运动等创造了条件。于是,大气科学研究开始由单纯定性的描述进入了可以定量分析的阶段。这是大气科学发展进程中的一次飞跃。1820 年,在气压、温度、湿度、风等气象要素的测定和气象观测站网逐步建立的条件下,H.W.布兰德斯绘制了历史上第一张天气图,开创了近代天气分析和天气预报方法,为大气科学向理论研究发展开辟了途径。这是大气科学发展史上的又一次飞跃。1835 年科里奥利力的概念和 1857 年 C.H.D.白贝罗提出的风和气压的关系,成为地球大气动力学和天气分析的基石。1920 年前后,气象学家 J.皮耶克尼斯、H.索尔贝格和 T.H.P.伯杰龙等提出的锋面、气旋和气团学说,为天气分析和预报 12 天以后的天气变化奠定了理论基础。1783 年,法国 J.A.C.查理制成了携带探测气象要素仪器的氢气气球。20 世纪 30 年代无线电探空仪开始普遍使用,这就能够了解大气的铅直结构,真正三度空间的大气科学研究从此开始。根据探空资料绘制的高空天气图,发现了大气长波。1939 年气象学家 C.-G.罗斯比提出了长波动力学,并由此引出了位势涡度理论(见大气动力方程)。这不仅使有理论依据的天气预报期限延伸到 34 天,而且为后来的数值天气预报和大气环流的数值模拟开辟了道路。1946 年I.朗缪尔、V.J.谢弗和 B.冯内古特的“播云”试验,探明了在过冷云中播撒固体二氧化碳或碘化银,可以使云中的过冷水滴冰晶化,增加云中的冰晶数目,促进降水,从此进入了人工影响天气的试验阶段。50 年代以前,大气科学虽然取得了很大的进展,但因受海洋、沙漠等人烟稀少地区缺乏资料的限制以及计算上的困难,还不能摆脱定性或半定性的研究状态。50 年代以后,各种新技术特别是电子计算机和气象卫星的采用,大气科学有了突飞猛进的发展,主要表现在以下两个方面:不断采用新的探测技术,使大气科学研究进入了宏观愈宏、微观愈微的新阶段。由于采用气象卫星、气象火箭和激光、微波、红外等遥感探测手段以及各种化学痕量分析手段等新技术,对大气的观测能力增强了,观测空间扩展了。如赤道上空五个地球同步卫星和两个极轨卫星几乎能提供全球大气同时间的情况,不再存在气象资料的空白地区。气象多普勒雷达可观测云的细微结构。气象卫星、新型气象雷达、飞机等探测手段联合应用,为开展各种规模的综合观测试验,为早期发现和追踪台风及生命史短至几小时的小尺度灾害性天气系统,为提高短期和短时(1、2 小时至 12 小时)预报水平,以及改进中期预报提供了条件。气象卫星在大气层外探测大气,不仅加大了观测范围,而且极大地丰富了观测内容,如广阔洋面的温度、云的微观结构、大气的辐射平衡等。气象卫星已成为现代大气科学发展的支柱之一。电子计算机的使用,使大气科学研究进入了定量和试验研究的新阶段。大气的各种现象,大至全球的大气环流,小至雨滴的形成过程,都可以依照物理和化学原理以数学形式表达,然而只有用电子计算机才可能进行运算并模拟这些现象的发生、发展和消亡的过程。大气中各类现象的相互影响,以及大气现象中的跃变形式(如飑线),都存在非常复杂的非线性问题。由于数学上的困难,以往大都是在某种假定下,首先把非线性的数学模式线性化,然后求解;大型高速电子计算机的问世,为解非线性方程提供了条件。此外,科学技术的发展,人类往往需要了解几星期、几个月甚至一年以上大气可能出现的状态。这也需依靠高速计算机获取和处理全球资料,以全球模式来进行天气预报和气候预报。电子计算机是现代大气科学发展的另一个支柱。可以预期,下一代甚至再下一代最大的电子计算机将首先用于大气科学。大气科学的迅猛发展正方兴未艾。随着世界气候计划及其他专项计划的执行,在常规观测系统的基础上,将更多地运用气象卫星、海洋观测卫星、多普勒雷达和各种特殊装备的飞最新资料推荐 最新精品资料整理推荐,更新于二二一年四月十二日 2021 年 4 月 12 日星期一 19:51:44 机等多种探测手段,以及新的大气化学观测和分析方法,进行各种特殊项目的观测,如海面高度、太阳常数、云和辐射的反馈、近海面风力、土壤湿度、碳循环等。通过以上观测和计划的执行,将对气候变化和中小尺度天气系统的精细结构及其发生发展原因有更加广泛和深入的研究,研究成果将不断提高对灾害性天气预报的水平,不断预示人类活动对气候影响的可能后果,以防患于未然。如近年来由人类活动造成大气中甲烷和一氧化二氮等微量气体含量的增加而引起的大气温室效应,据估计,可能很快达大气中二氧化碳所引起的温室效应的一半。这些温室效应的总效果可能导致地球气候发生很大变化。对温室效应气体和大气污染等问题的深入研究,使得过去有一定忽略的大气化学的重要性越来越显著,大气化学将会更加迅速地发展。总之,人类生产和生活的发展,将不断提出新的问题和要求,推动大气科学新理论和新分支的发展。大气科学新的发展,必将不断提高它为生产和生活服务的能力,如提高天气和气候预报的准确率、为开发利用气象资源和制定经济政策提供更加可靠的科学依据等,其经济效益和社会效益将不可估量。海洋科学(卷名:大气科学 海洋科学 水文科学)海洋科学是研究海洋的自然现象、性质及其变化规律,以及与开发利用海洋有关的知识体系。它的研究对象是占地球表面 71的海洋,包括海水、溶解和悬浮于海水中的物质、生活于海洋中的生物、海底沉积和海底岩石圈,以及海面上的大气边界层和河口海岸带。因此,海洋科学是地球科学的重要组成部分,它与物理学、化学、生物学、地质学以及大气科学、水文科学等密切相关。海洋科学的研究领域十分广泛,其主要内容包括对于海洋中的物理、化学、生物和地质过程的基础研究,和面向海洋资源开发利用以及海上军事活动等的应用研究。由于海洋本身的整体性、海洋中各种自然过程相互作用的复杂性和主要研究方法、手段的共同性而统一起来,使海洋科学成为一门综合性很强的科学。海洋科学又是一门正在迅速发展的科学。近半个世纪以来,特别是 20 世纪 60 年代以来,随着现代科学技术的迅速发展以及海洋资源开发利用规模的不断扩大,海洋科学在社会经济发展中的作用日益显著,许多国家都非常重视海洋科学的基础研究和开发利用海洋资源的技术研究,并且取得很大的进步。本文对海洋科学的研究对象和特点、学科体系和发展史及现状作一概括的介绍。研究对象世界海洋 在太阳系的行星中,地球处于“得天独厚”的位置。地球的大小和质量、地球与太阳的距离、地球的绕日运行轨道以及自转周期等因素相互的作用和良好配合,使得地球表面大部分区域的平均温度适中(约 15),以致它的表面同时存在着三种状态(液态、固态和气态)的水,而且地球上的水绝大部分是以液态海水的形式汇聚于海洋之中,形成一个全球规模的含盐水体世界大洋。地球是太阳系中惟一拥有海洋的星球。因此,我们的地球又称为“水的行星”。全球海洋总面积约 3.6 亿平方公里,约占地表总面积的 71,相当于陆地面积的 2.5 倍。全球海洋的平均深度约 3800 米,最大深度 11034 米,太平洋、大西洋和印度洋的主体部分,平均深度都超过 4000 米。全球海洋的容积约为 13.7 亿立方公里,相当于地球总水量的 97以上。假设地球的地壳是一个平坦光滑的球面,那么地球便成为一个表面被 2600 多米深的最新资料推荐 最新精品资料整理推荐,更新于二二一年四月十二日 2021 年 4 月 12 日星期一 19:51:44 海水所覆盖的“水球”。世界海洋每年约有 50.5 万立方公里的海水在太阳辐射作用下被蒸发,向大气供应 87.5的水汽。每年从陆地上被蒸发的淡水仅有 7.2 万立方公里,约占大气中水汽总量的 12.5。从海洋或陆地蒸发的水汽上升凝结后,又作为雨或雪降落在海洋和陆地上。陆地上每年约有 4.7 万立方公里的水在重力的作用下,或沿地面注入河流,或渗入土壤形成地下水,最终注入海洋,从而构成了地球上周而复始的水文循环。海水是一种含有多种溶解盐类的水溶液。在海水中,水占 96.5左右,其余则主要是各种各样的溶解盐类和矿物,还有来自大气中的氧、二氧化碳和氮等溶解气体。世界海洋的平均含盐量约为 3.5。而世界大洋的总盐量约为 481015 吨。假若将全球海水里的盐分全部提炼出来,均匀地铺在地球表面上,便会形成厚约 40 米的盐层。目前在海水中已发现的化学元素超出 80 种。组成海水的化学元素,除了构成水的氢和氧以外,绝大部分呈离子状态,主要有氯、钠、镁、硫、钙、钾、溴、碳、锶、硼、氟等 11 种,它们占海水中全部溶解元素含量的 99;其余的元素含量甚微,称为海水微量元素。溶解于海水中的氧、二氧化碳等气体,以及磷、氮、硅等营养盐元素,对海洋生物的生存极为重要。海水中的溶解物质不仅影响着海水的物理化学特征,而且也为海洋生物提供了营养物质和生态环境。海洋对于生命具有特别重要的意义。海水中主要元素的含量和组成,与许多低等动物的体液几乎一致,而一些陆地高等动物甚至人的血清所含的元素成分也与海水类似。研究证明,地球上的生命起源于海洋,而且绝大多数动物的门类生活在海洋中。在陆地上,生物集中栖息在地表上下数十米的范围内;可是在海洋中,生物栖息范围可深达 1 万米。因此,研究生命起源的学者把海洋称作“生命的摇篮”。海洋作为地球水圈的重要组成部分,同大气圈、岩石圈以及生物圈相互依存,相互作用,成为控制地球表面的环境和生命特征的一个基本环节,并具有下面一些特征:第一,海洋是大气-海洋系统的重要组成部分。由于水具有很高的热容量,因此世界海洋是大气中水汽和热量的重要来源,并参与整个地表物质和能量平衡过程,成为地球上太阳辐射能的一个巨大的储存器。在同一纬度上,由于海陆反射率的固有差异,海面单位面积所吸收的太阳辐射能约比陆地多 2550。因此,全球大洋表层海水的年平均温度要比全球陆地上的平均温度约高 10。由于太阳辐射能在地球表面上分布的固有差异,赤道附近的水温显著地高于高纬度海区,因此,在海洋中导致暖流从赤道流向高纬度、寒流从高纬度流向赤道的大尺度循环。从而引起能量重新分布,使得赤道地区和两极的气候不致过分悬殊。海面在吸收太阳辐射能的同时,还有蒸发过程。海水的汽化热很高,蒸发时便消耗大量热量。反之,在水汽受冷凝结时又会释放出相同的热量。因此,海水的蒸发既是物质状态的转化,也是能量状态的转化。海面蒸发产生的大量水汽,可被大气环流及其他局部空气运动携带至数千公里以外,重新凝结成雨雪降落到所有大陆的表面,成为地球表面淡水的源泉,从而参与地表的水文循环,参与整个地表的物质和能量平衡过程。由此可见,海洋对全球天气和气候的形成,以至地球表面形态的塑造都有深远的影响。全球尺度的海洋-大气相互作用,不仅可以在几个月、几年内对地球上气候带来影响,而且可以在漫长的地质时期中导致显著的气候变异。地球表面的水,除海水以外,约有 2被束缚在固体水(冰)中,这也就是今天的南极洲和格陵兰等冰川。海洋-大气相互作用和气候演变,可以通过海平面的高度和冰川体积的变化显示出来。地质学研究表明,在地球最近所经历的 10 亿年中,地球表面的水量是近似恒定的。由此可以推知,假若现代冰川全部融化则海平面将升高约 60 米。这对于人类无疑将是一场巨大的灾难。事实上,在地质时期中,曾出现过大陆冰川发展和融化的多次交替,每次交替都影响地球的气候、大气环流和水文循环,引起生物的大调整。据地质学和古地理学的考察,在第四纪最大的冰期中,冰川的体积 3 倍于现代冰川,海平面则平均低于现代海平面约 130 米,露出了大部分大陆架。基于这些观测事实,目前对地球气候长期变异过程已建立多种“冰川-海洋-大气”系统的相互作用最新资料推荐 最新精品资料整理推荐,更新于二二一年四月十二日 2021 年 4 月 12 日星期一 19:51:44 模型,并从数值上模拟出接近观测事实的结果。这种模拟结果大体同根据更新世地质、古地理资料复原的气候演变相符。第二,海洋是地球表面有机界与无机界相互转化的一个重要环节。地球上存在着一个很薄的“生物圈”,它集中在地球表面三种形态的水的交界面附近。地球上这个有生命的物质圈层之所以能够产生、进化并延续下去,是依靠大规模的物质和能量转化以及有机物质和无机物质的相互转化。而这些物质和能量的循环与转化过程的方式和强度,在迄今已知的星球中也是独一无二的。否则,我们赖以生存的地球将如同已知没有发现生命现象的星球一样,只能是一个死寂的世界。海洋中的动物约 1620 万种,植物约 1 万多种。海洋中的生物,如同整个生物圈中的生物一样,绝大多数直接地或间接地依赖于光合作用而生存。在地球上,植物的光合作用能将无机物直接转化为有机物,从而将太阳辐射能转化为化学能。动物是不进行光合作用的,基本上依赖于消耗植物(直接或间接)而生存繁衍。假若植物的光合作用过程一旦中止,则绝大多数的动物就有灭绝的可能。这样,由海洋光合植物、食植性动物和食肉性动物逐级依赖和制约,组成了海洋食物链。在这链的每一个环节,都有物质和能量的转化,包括真菌和细菌对动植物尸体的分解作用,把有机物转化为无机物。于是,由植物、动物、细菌、真菌以及与之有关的非生命环境组成一个将有机界与无机界联系起来的系统,即通常所说的海洋生态系。这个系统的状态,通常可用两类指标来描述:一类是静态指标,如生物量等;另一类是动态指标,如生产力等。根据有的学者估算,海洋的总生物量约为 31010吨,只有陆地总生物量的 1/200 左右,如按干重计算则仅相当于陆地总生物量的 1/350。但是,就生产率而论,海洋却同陆地大体相当(海洋为 4.31011吨/年,陆地为 4.51011吨/年);更值得注意的是,海洋有机物质的相对生产率(即生产力与生物量之比值)远高于陆地,两者之比相差 200 多倍。这是因为海洋中有机物质的生产者主要是单细胞生物,而陆地上有机物质的生产者主要是多细胞生物。第三,海洋作为一个物理系统,其中发生着各种不同类型和不同尺度的海水运动和过程,对于海洋中的生物、化学和地质过程有着显著的影响。海水运动按其成因,大致分为:海水密度变化产生的“热盐”运动,如海面蒸发、冷却和结冰,以及海水混合等,使海水密度增大而下沉,并下沉至与其密度相同的等密度面或海底作水平运动;海面风应力驱动形成的风生运动,如风海流和风生环流等;天体引力作用产生的潮汐运动;海水运动速度切变产生的湍流运动;各种扰动产生的波动,如风浪、惯性波和行星波等。而海洋中的各种物理过程,通常除了按其物理本质分为力学、热学、声学、光学和电磁学等过程以外,一般按其特征空间尺度(或特征波数,主要是水平特征空间尺度或波数)和特征时间尺度(或特征频率),大致分为小尺度过程、中尺度过程和大尺度过程。其中,小尺度过程主要包括:小尺度各向同性湍流,海水层结的细微结构、声波、表面张力波、表面重力波和重力内波;中尺度过程主要包括:惯性波、潮波、海洋锋、中尺度涡或行星波;大尺度过程主要包括:海况的季节变化、大洋环流、海水层结的纬向不均匀性和热-盐环流等。海洋是生物的生存环境,海水运动等物理过程会导致生物环境的改变。因此,不同的流系、水团具有不同的生物区系和不同的生物群落。海水运动或波动是海洋中的溶解物质、悬浮物和海底沉积物搬运的重要动力因素,因此,海洋中化学元素的分布和海洋沉积,以及海岸地貌的塑造过程都是不能脱离海洋动力环境的。反过来,海水的运动状况也与特定的地理环境、化学环境有关。这就是海洋自然环境的统一性的具体表现。第四,大洋地壳作为全球地壳的一个结构单元,具有不同于大陆地壳的一系列特点。陆壳较轻、较厚,比较古老;洋壳较重、较薄(缺失花岗岩层),相对年轻。在地壳的均衡作用下,陆壳质轻而浮起,洋壳质重而深陷。地球之所以存在着如此深广的海洋,是与洋壳的物质组成有关的。最新资料推荐 最新精品资料整理推荐,更新于二二一年四月十二日 2021 年 4 月 12 日星期一 19:51:44 由于海水的覆盖,海底地壳是难以直接观察的。近半个世纪以来,深海考察发现了海洋中有深度超过万米的海沟,长达上千公里的断裂带以及众多的海山;而给人印象最深的是存在着一条环绕全球、纵贯大洋盆地、延伸达 80000 公里的水下山脉体系。这条水下山脉纵贯大西洋和印度洋的洋盆中部,所以称为大洋中脊。在大洋中脊顶部发育有一条被断裂带错开的纵向的大裂谷,称为中央裂谷。和大陆地壳相比较,大洋地壳缺乏陆上那种挤压性的褶皱山系。巨大的大洋中脊主要由来自炽热的地球深处的玄武岩所组成。观测和研究表明,大洋中脊的裂谷是地壳最薄弱之处。这里有频繁的地震、火山活动和极高的热流值,地球内部炽热的熔岩通过这个薄弱带不断涌上来,冷却后凝结成新的洋底地壳,并向两侧扩张。扩张速度可达每年 116 厘米。这种扩张过程迄今仍在继续。这条全球性的大洋中脊和裂谷系以及海沟等构造活动带把全球岩石圈分成六大板块(欧亚板块、非洲板块、印度板块、南极洲板块、美洲板块和太平洋板块)和许多小板块。板块是位于地球软流层上的刚性块体,板块的边界是构造运动最活跃的地方,而板块之间的相对运动则是全球构造运动的基本原因。在板块的分离、漂移和聚合作用下,海陆位置不时变动。在地质历史上,大陆曾反复裂离和聚合,大洋则屡经张开和关闭。2 亿年前,地球上只有一个超级大陆和超级大洋,当时还没有大西洋和印度洋。近 2 亿年来,大西洋和印度洋从无到有,从小到大,而太平洋却在不断地收缩。在一个表面积基本不变的地球上,一些大洋的张开必然伴随着另一些大洋的缩小或关闭。海洋是个非常古老的地质体,海水的年龄可以远溯至前寒武纪。但大洋地壳是一边生长,一边俯冲,处于不断更新的过程。现代洋壳的年龄不到 2 亿年。古老的海水与年轻的洋底共存,应当说是海洋系统的一个重要特点。20 世纪 70 年代以来,海洋学者乘坐潜水器考察大洋中脊和裂谷,发现从裂谷底喷涌出来的热泉。原来,冷海水沿裂隙渗入炽热的新生洋壳内部,变成热海水,热海水和洋壳玄武岩之间发生强烈的化学反应。玄武岩中的铁、锰、铜、锌等被淋滤出来进入热海水,从而喷出富含金属的热泉。由河流带入海洋中的镁、硫酸根,在上述过程中也大部分被中脊轴部的洋壳所吸收。据估计,沿着 80000 公里长的大洋中脊