初一下册数学知识点总结.pdf
第 1 页 初一下册数学知识点总结 初一下册数学学问点总结 多项式除以单项式 一、单项式 1、都是数字与字母的乘积的代数式叫做单项式。2、单项式的数字因数叫做单项式的系数。3、单项式中全部字母的指数和叫做单项式的次数。4、单独一个数或一个字母也是单项式。5、只含有字母因式的单项式的系数是 1 或1。6、单独的一个数字是单项式,它的系数是它本身。7、单独的一个非零常数的次数是 0。8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。9、单项式的系数包括它前面的符号。10、单项式的系数是带分数时,应化成假分数。11、单项式的系数是 1 或1 时,通常省略数字“1”。12、单项式的次数仅与字母有关,与单项式的系数无关。二、多项式 1、几个单项式的和叫做多项式。2、多项式中的每一个单项式叫做多项式的项。3、多项式中不含字母的项叫做常数项。4、一个多项式有几项,就叫做几项式。第 2 页 5、多项式的每一项都包括项前面的符号。6、多项式没有系数的概念,但有次数的概念。7、多项式中次数的项的次数,叫做这个多项式的次数。三、整式 1、单项式和多项式统称为整式。2、单项式或多项式都是整式。3、整式不肯定是单项式。4、整式不肯定是多项式。5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。四、整式的加减 1、整式加减的理论依据是:去括号法则,合并同类项法则,以及乘法安排率。2、几个整式相加减,关键是正确地运用去括号法则,然后精确合并同类项。3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。(2)按去括号法则去括号。(3)合并同类项。4、代数式求值的一般步骤:(1)代数式化简。(2)代入计算 第 3 页 (3)对于某些特别的代数式,可采纳“整体代入”进行计算。五、同底数幂的乘法 1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中 a 为底数,n 为指数,an 的结果叫做幂。2、底数相同的幂叫做同底数幂。3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:aman=am+n。4、此法则也可以逆用,即:am+n=aman。5、开头底数不相同的幂的乘法,假如可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。六、幂的乘方 1、幂的乘方是指几个相同的幂相乘。(am)n 表示 n 个 am 相乘。2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n=amn。3、此法则也可以逆用,即:amn=(am)n=(an)m。七、积的乘方 1、积的乘方是指底数是乘积形式的乘方。2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。3、此法则也可以逆用,即:anbn=(ab)n。八、三种“幂的运算法则”异同点 1、共同点:第 4 页 (1)法则中的底数不变,只对指数做运算。(2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。(3)对于含有 3 个或 3 个以上的运算,法则仍旧成立。2、不同点:(1)同底数幂相乘是指数相加。(2)幂的乘方是指数相乘。(3)积的乘方是每个因式分别乘方,再将结果相乘。九、同底数幂的除法 1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:aman=am-n(a0)。2、此法则也可以逆用,即:am-n=aman(a0)。十、零指数幂 1、零指数幂的意义:任何不等于 0 的数的 0 次幂都等于 1,即:a0=1(a0)。十一、负指数幂 1、任何不等于零的数的p 次幂,等于这个数的 p 次幂的倒数,即:注:在同底数幂的除法、零指数幂、负指数幂中底数不为 0。十二、整式的乘法 (一)单项式与单项式相乘 1、单项式乘法法则:单项式与单项式相乘,把它们的系数、第 5 页 相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。2、系数相乘时,留意符号。3、相同字母的幂相乘时,底数不变,指数相加。4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。5、单项式乘以单项式的结果仍是单项式。6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。(二)单项式与多项式相乘 1、单项式与多项式乘法法则:单项式与多项式相乘,就是依据安排率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。2、运算时留意积的符号,多项式的每一项都包括它前面的符号。3、积是一个多项式,其项数与多项式的项数相同。4、混合运算中,留意运算挨次,结果有同类项时要合并同类项,从而得到最简结果。(三)多项式与多项式相乘 1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。2、多项式与多项式相乘,必需做到不重不漏。相乘时,要按 第 6 页 肯定的挨次进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。4、运算结果中有同类项的要合并同类项。5、对于含有同一个字母的一次项系数是 1 的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x2+(a+b)x+ab。十三、平方差公式 1、(a+b)(a-b)=a2-b2,即:两数和与这两数差的积,等于它们的平方之差。2、平方差公式中的 a、b 可以是单项式,也可以是多项式。3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成 (a+b)?(a-b)的形式,然后看 a2 与 b2 是否简单计算。初一下册数学学问点归纳 一.整式 1.单项式 由数与字母的积组成的代数式叫做单项式.单独一个数或字母也是单项式.单项式的系数是这个单项式的数字因数,作为单项式的系数,必需连同数字前面的性质符号,假如一个单项式只是字母的积,并非 第 7 页 没有系数.一个单项式中,全部字母的指数和叫做这个单项式的次数.2.多项式 几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不行能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.3.整式单项式和多项式统称为整式.二.整式的加减 1.整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.2.括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.三.同底数幂的乘法 同底数幂的乘法法则:(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要留意以下几点:法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个详细的数字式字母,也可以是一个单项或多项式;第 8 页 指数是 1 时,不要误以为没有指数;不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;当三个或三个以上同底数幂相乘时,法则可推广为(其中m、n、p 均为正数);公式还可以逆用:(m、n 均为正整数)四.幂的乘方与积的乘方 1.幂的乘方法则:(m,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.2.3.底数有负号时,运算时要留意,底数是 a 与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3 化成-a3 4.底数有时形式不同,但可以化成相同.5.要留意区分(ab)n 与(a+b)n 意义是不同的,不要误以为(a+b)n=an+bn(a、b 均不为零).6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(n 为正整数).7.幂的乘方与积乘方法则均可逆向运用.五.同底数幂的除法 1.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,第 9 页 即(a0,m、n 都是正数,且 mn).2.在应用时需要留意以下几点:法则使用的前提条件是“同底数幂相除”而且 0 不能做除数,所以法则中 a0.任何不等于 0 的数的 0 次幂等于 1,即,如,(-2.50=1),则00 无意义.任何不等于 0 的数的-p 次幂(p 是正整数),等于这个数的 p的次幂的倒数,即(a0,p 是正整数),而 0-1,0-3 都是无意义的;当a0 时,a-p 的值肯定是正的;初一下册数学基础学问点 (一)正负数 1.正数:大于 0 的数。2.负数:小于 0 的数。3.0 即不是正数也不是负数。4.正数大于 0,负数小于 0,正数大于负数。(二)有理数 1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:)2.整数:正整数、0、负整数,统称整数。3.分数:正分数、负分数。第 10 页 (三)数轴 1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数 0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)2.数轴的三要素:原点、正方向、单位长度。3.相反数:只有符号不同的两个数叫做互为相反数。0 的相反数还是 0。4.肯定值:正数的肯定值是它本身,负数的肯定值是它的相反数;0 的肯定值是 0,两个负数,肯定值大的反而小。(四)有理数的加减法 1.先定符号,再算肯定值。2.加法运算法则:同号相加,到相同符号,并把肯定值相加。异号相加,取肯定值大的加数的符号,并用较大的肯定值减去较小的肯定值。互为相反数的两个数相加得 0。一个数同 0 相加减,仍得这个数。3.加法交换律:a+b=b+a 两个数相加,交换加数的位置,和不变。4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。5.a-b=a+(-b)减去一个数,等于加这个数的相反数。第 11 页