高等数学课件D3习题课中值定理及导数的应用.ppt
二、二、导数应用导数应用习题课一、一、微分中值定理及其应用微分中值定理及其应用中值定理及导数的应用 第三三章 拉格朗日中值定理 一、一、微分中值定理及其应用微分中值定理及其应用1.微分中值定理及其相互关系微分中值定理及其相互关系 罗尔定理 泰勒中值定理 柯西中值定理 2.微分中值定理的主要应用微分中值定理的主要应用(1)研究函数或导数的性态(2)证明恒等式或不等式(3)证明有关中值问题的结论3.有关中值问题的解题方法有关中值问题的解题方法利用逆向思维逆向思维,设辅助函数.一般解题方法:(1)证明含一个中值的等式或根的存在,(2)若结论中涉及含中值的两个不同函数,(3)若结论中含两个或两个以上的中值,可用原函数法找辅助函数.多用罗尔定理罗尔定理,可考虑用柯柯西中值定理西中值定理.必须多次应用多次应用中值定理中值定理.(4)若已知条件中含高阶导数,多考虑用泰勒公式泰勒公式,(5)若结论为不等式,要注意适当适当放大放大或缩小缩小的技巧.有时也可考虑对导数用中值定理对导数用中值定理.例例.设函数在内可导,且证明在内有界.证证:取点再取异于的点对为端点的区间上用拉氏中值定理,得(定数)可见对任意即得所证.二、二、导数应用导数应用1.研究函数的性态:增减,极值,凹凸,拐点,渐近线,2.解决最值问题 目标函数的建立与简化 最值的判别问题3.其他应用:求不定式极限;几何应用;相关变化率;证明不等式;研究方程实根等.的连续性及导函数例例.填空题填空题(1)设函数其导数图形如图所示,单调减区间为 ;极小值点为 ;极大值点为 .提示提示:的正负作 f(x)的示意图.单调增区间为 ;.在区间 上是凸弧;拐点为 提示提示:的正负作 f(x)的示意图.形在区间 上是凹弧;则函数 f(x)的图(2)设函数的图形如图所示,例例.求数列的最大项.证证:设用对数求导法得令得因为在只有唯一的极大值点因此在 处也取最大值.又因中的最大项.极大值列表判别:例例.证明证证:设,则故时,单调增加,从而即例例.设在上存在,且单调递减,有证证:设则所以当令得即所证不等式成立.证明对一切例例.证证:只要证利用一阶泰勒公式,得故原不等式成立.例例.设函数 f(x)在 0,3 上连续,在(0,3)内可导,且 分析:所给条件可写为(2003考研)试证必存在 想到找一点 c,使证证:因 f(x)在0,3上连续,所以在 0,2 上连续,且在 0,2 上有最大值 M 与最小值 m,故由介值定理,至少存在一点 由罗尔定理知,必存在 例例.设在内可导,且证明至少存在一点使上连续,在证证:问题转化为证设辅助函数显然在 0,1 上满足罗尔定理条件,故至使即有少存在一点例例.且试证存在证证:欲证因 f(x)在 a,b 上满足拉氏中值定理条件,故有将代入,化简得故有即要证 P182 2(2);10(1),(3);11(1);12作业作业1.设函数上具有二阶导数,且满足证明序列发散.证:证:故序列发散.(2007 考研)保号性保号性 定理定理2.设在区间上连续,且试证存在使证证:不妨设必有使故保号性保号性 定理定理必有使故又在上连续,由零点定理知,存在使