Solidworks有限元分析教程教案.pptx
会计学1Solidworks有限元分析教程有限元分析教程目目 录录第1页/共30页企业需求与有限元分析企业需求与有限元分析Design Analysisn n更少的样机:省钱n n更短的周期:省时n n更好的质量:品质第2页/共30页有限元分析的主要步骤有限元分析的主要步骤n n前处理前处理建立分析对象的有限元模型建立分析对象的有限元模型n n求解求解对有限元模型的计算工况进行求解对有限元模型的计算工况进行求解n n后处理后处理观察分析结果,评估设计是否符合要求观察分析结果,评估设计是否符合要求第3页/共30页Cosmos/Works有限元分析的步有限元分析的步骤骤1.1.建立几何模型建立几何模型2.2.定义材料属性定义材料属性3.3.定义边界条件定义边界条件(约束和载荷约束和载荷)4.4.划分网格划分网格5.5.求解求解6.6.查看和评估结果查看和评估结果修改,重新,细化第4页/共30页Cosmos/Works的用户界面的用户界面第5页/共30页Cosmos/Works的工具条的工具条定义、修改、删除专题定义材料生成有限元网格对当前专题进行计算在几何模型/有限元模型之间进行切换显示从所选的特征中选择面元第6页/共30页Cosmos/Works的选项对话框的选项对话框第7页/共30页Cosmos/Works线性静力分析线性静力分析n n例1.支座分析n n例2.轴承载荷n n例3.壳单元,静水压n n例4.Motion,远端载荷第8页/共30页线性静力分析:定义专题线性静力分析:定义专题n nDisplacement in the radial direction:Displacement in the radial direction:n nSelect“Axis1”and then define displacement plot in X-direction(radial Select“Axis1”and then define displacement plot in X-direction(radial to the axis).Select deformation scale=1to the axis).Select deformation scale=1n nRight-click on the displacement plot icon“plot2”and then select”List Right-click on the displacement plot icon“plot2”and then select”List selected”selected”n nAverage displacement of“pole piece lower”=-0.0019504”(decrease in radius)Average displacement of“pole piece lower”=-0.0019504”(decrease in radius)n nAverage displacement of“pole piece upper”=0.007896“(increase in radius)Average displacement of“pole piece upper”=0.007896“(increase in radius)n nSum of these 2 displacement=0.009846”Initial interfernce of 0.01”Sum of these 2 displacement=0.009846”Initial interfernce of 0.01”n nHoop Stress(tangential):Hoop Stress(tangential):n nSelect“Axis1”and then define stress plot in Y-direction(radial to the Select“Axis1”and then define stress plot in Y-direction(radial to the axis).Select deformation scale=1axis).Select deformation scale=1n nRight-click on the stress plot icon“plot2”and then select”List selected”Right-click on the stress plot icon“plot2”and then select”List selected”n nNegative stress on“pole piece lower”(compression)Negative stress on“pole piece lower”(compression)n nPositive stress on“pole piece upper”(tension)Positive stress on“pole piece upper”(tension)第9页/共30页线性静力分析:定义材料属性线性静力分析:定义材料属性n nSimulate parts which are separated by large gapsn nFirst run the model with small displacement option and look at the resultsn n If you see that there is a change in the orientation of the contact surfaces during loading or if the results doesnt look realistic,use large deflection optionExample 1Example 1Example 2Example 2第10页/共30页线性静力分析:网格划分线性静力分析:网格划分n nOpen“RectangleGap.sldasm”Open“RectangleGap.sldasm”n nDefine a static study“smallcontact”Define a static study“smallcontact”n nApply material“Alloy steel”to both partsApply material“Alloy steel”to both partsn nApply a pressure of 725 psi on the top faceApply a pressure of 725 psi on the top facen nSelect the two front faces and then apply restraint.Select Flat face Select the two front faces and then apply restraint.Select Flat face option and then select“Normal to face”option and then select“Normal to face”n nFix the left semi-circular faceFix the left semi-circular facen nHide the loads/bc symbolsHide the loads/bc symbolsn nDefine“Surface”contact between the top face of the bottom leg Define“Surface”contact between the top face of the bottom leg and the perpendicular faceand the perpendicular facen nCreate mesh and runCreate mesh and runn nDefine a stress plot with scale factor=1.Look at the contact Define a stress plot with scale factor=1.Look at the contact surface.surface.This problem requires large displacement nonlinear contact!This problem requires large displacement nonlinear contact!第11页/共30页线性静力分析:定义约束线性静力分析:定义约束n nDefine a new static study“LargeDisp”n nDragn drop the material and loads/bc folders from“small contact”studyn nRight-click on the study name and click on properties.Select“Large displacement contact”option.n nRun the analysisn nDefine a stress plot with scale factor=1.Look at the contact area.Looks real!Looks real!第12页/共30页线性静力分析:定义载荷线性静力分析:定义载荷n nSimulate heat resistance between parts for thermal analysis Account for heat resistance of thin parts without actually modeling them!Account for heat resistance of thin parts without actually modeling them!Define thermal conductivity at the contact area to model the properties of the glue between the chip and the substrate第13页/共30页线性静力分析:求解线性静力分析:求解n nOpen“Thermal contact resistance_transistor.sldasm”n nExplode the model and set preferred units to“SI”and temperature units to“Kelvin”n nDefine a thermal study“NoRes”n nApply material“AISI 304”for“Voltage regulator”and“Copper”for Heat sinkn nDefine“Surface”contact with No resistance between the contact facesn nApply convection to all the faces of the model except the contact facesn nFilm coefficient=250 W/(m2.K)Film coefficient=250 W/(m2.K)n nBulk temperature=298 KBulk temperature=298 K第14页/共30页线性静力分析:观察线性静力分析:观察结果结果n nApply Heat power=25 W for“Voltage regulator”Apply Heat power=25 W for“Voltage regulator”n nMesh with default settings and run the analysisMesh with default settings and run the analysisn nNotice the temperature distribution of the heat sinkNotice the temperature distribution of the heat sinkDistributed Resistance:Distributed Resistance:n nDefine a new thermal study“DistRes”Define a new thermal study“DistRes”n nDragn drop“Material”folder and Loads/Bc folder from NoRes Dragn drop“Material”folder and Loads/Bc folder from NoRes study to DistRes studystudy to DistRes studyn nEdit contact pair definition and define distributed resistance=0.005 Edit contact pair definition and define distributed resistance=0.005 K.m2/W K.m2/W n nTotal resistance=Distributed resistance X Contact areaTotal resistance=Distributed resistance X Contact area =0.005 X 0.0003392=14.7 K/W =0.005 X 0.0003392=14.7 K/Wn nRun the study“DistRes”Run the study“DistRes”n nNotice the temperature distribution of the heat sinkNotice the temperature distribution of the heat sink第15页/共30页Thermal Contact Example(Contd)n nProbe the temperature valuen nDefine a thermal plot with meshDefine a thermal plot with meshn nRight-click the plot icon and select ProbeRight-click the plot icon and select Proben nPick all the nodes on the edge of both the partsPick all the nodes on the edge of both the partsn nClick on the Plot icon to view the temperature Click on the Plot icon to view the temperature variation from the top face of the voltage regulator variation from the top face of the voltage regulator to the bottom of the heat sinkto the bottom of the heat sink 第16页/共30页Thermal Contact Example(Contd)Total Resistance:Total Resistance:n nDefine a new thermal study“TotalRes”n nDragn drop“Material”folder and Loads/Bc folder from NoRes study to TotalRes studyn nEdit contact pair definition and define Total resistance=25 K/W n nRun the study“TotalRes”n nNotice the temperature distribution of the heat sink第17页/共30页Load Simulation:Remote Loadsn nRemote Loadsn nDirect TransferDirect Transfern nFlexible surfaceFlexible surfacen nApplied as equivalent Applied as equivalent force&momentforce&momentn nRigid BeamRigid Beamn nRigid surfaceRigid surfacen nRemote Restraintn nRigid connectionn nModel effect of a Model effect of a rigid virtual part rigid virtual part between two facesbetween two facesForce/Moment from Motion Simulation at this point applied on the selected face第18页/共30页Remote Load Examplen nOpen“RemoteLoadExample.sldasm”Open“RemoteLoadExample.sldasm”n nDefine a static study“Remote”Define a static study“Remote”n nApply material“Alloy steel”Apply material“Alloy steel”n nFix the flat faceFix the flat facen nSelect“Coordinate system1”and the end face of the cantilever.Define remote load of 10N in the X Select“Coordinate system1”and the end face of the cantilever.Define remote load of 10N in the X direction.direction.n nCreate mesh and run.Create mesh and run.n nDouble-click on“Plot1”under the stress folderDouble-click on“Plot1”under the stress foldern nAnimate the resultsAnimate the resultsn nCompare the plot results of“Remote”study with“Axial Tension”studyCompare the plot results of“Remote”study with“Axial Tension”study第19页/共30页Motion Load Transfer Using Remote Loadsn nGo to SW Add-in and click“COSMOS/Motion”Go to SW Add-in and click“COSMOS/Motion”n nOpen“LoadTransferModel_With_Result.sldasm”Open“LoadTransferModel_With_Result.sldasm”n nPlay the animation and save the load file for frame#300Play the animation and save the load file for frame#300n nDelete the motion resultsDelete the motion resultsn nGo to CW menu,Import Motion Load and open this load file from“MotionLoadTransfer”directoryGo to CW menu,Import Motion Load and open this load file from“MotionLoadTransfer”directoryn nSelect all the loads related to crank-1 and then click OK.Select all the loads related to crank-1 and then click OK.n nOpen the part“crank”Open the part“crank”n nYoull see that there is a new study“Frame-300”with motion loads transferred as remote loadsYoull see that there is a new study“Frame-300”with motion loads transferred as remote loadsn nApply material“Plain carbon steel”Apply material“Plain carbon steel”n nGo to study properties and select“FFEPlus”solver and“Inertia relief option”Go to study properties and select“FFEPlus”solver and“Inertia relief option”n nRun the analysisRun the analysis第20页/共30页Web Reportsn nInclusion of report templates in the feature treen nSaving of report settingn nAutomatic creation of all plots第24页/共30页Report Examplen nOpen“ReportExample.sldasm”n nNew option save JPEG files(Right-click on the Study name)n nRight-click on Report and click definen nPoint to the logo file“ReportLogo.bmp”n nPoint to the right stress AVI and VRML filesn nSelect option“Automatically update all plots in JPEG files”.Click OK.n nYou can also get a print version第25页/共30页Materialn nSupports orthotropic material properties for solids and shells n nOption to use different Material library filesn nNew redesigned material browser utility第26页/共30页Licensingn nSingle license file for hardware lock&FlexLM securityn nNew License Administrator to manage the licensen nSupport USB port hardware lockn nSupport redundant servers第27页/共30页Other customer enhancementsn nAutomatically run analysis after meshingAutomatically run analysis after meshingn nEdge pressure for shellsEdge pressure for shellsn nApply uniform temperature to componentsApply uniform temperature to componentsn nAutomatic adjustments of Max&min in plots on updateAutomatic adjustments of Max&min in plots on updaten nFFEPlus solver for thermal analysisFFEPlus solver for thermal analysisn nIncrease the limit on number of modes for frequency analysis from 20 to 100Increase the limit on number of modes for frequency analysis from 20 to 100n nAdd symbol for gravity loadsAdd symbol for gravity loadsn nImprove section clippingImprove section clippingn nSave plots in JPEG formatSave plots in JPEG formatn nImprove transient thermal animationsImprove transient thermal animationsn nOption to switch between different languagesOption to switch between different languagesn nOthersOthers第28页/共30页30Thank You!第29页/共30页