马尔科夫预测方法.pptx
会计学1马尔科夫预测方法马尔科夫预测方法本节主要内容:本节主要内容:本节主要内容:本节主要内容:n n几个基本概念 状态;状态;状态转移过程;状态转移过程;马尔科夫过程;马尔科夫过程;状态转移概率;状态转移概率;状态转移概率矩阵。状态转移概率矩阵。n n马尔可夫预测法 状态转移概率;状态转移概率;状态转移概率矩阵。状态转移概率矩阵。第1页/共24页 对事件的全面预测,不仅要能够指出事件发生的各种可能结果,而且还必须给出每一种结果出现的概率。马尔可夫(Markov)预测法,就是一种预测事件发生的概率的方法。它是基于马尔可夫链,根据事件的目前状况预测其将来各个时刻(或时期)变动状况的一种预测方法。马尔可夫预测法是对地理事件进行预测的基本方法,它是地理预测中常用的重要方法之一。第2页/共24页n n状态状态状态状态。指某一事件在某个时刻(或时期)。指某一事件在某个时刻(或时期)出现的某种结果。出现的某种结果。n n状态转移过程状态转移过程状态转移过程状态转移过程。事件的发展,从一种状态。事件的发展,从一种状态转变为另一种状态,称为状态转移。转变为另一种状态,称为状态转移。n n马尔可夫过程马尔可夫过程马尔可夫过程马尔可夫过程。在事件的发展过程中,若。在事件的发展过程中,若每次状态的转移都仅与前一时刻的状态有每次状态的转移都仅与前一时刻的状态有关,而与过去的状态无关,或者说状态转关,而与过去的状态无关,或者说状态转移过程是无后效性的,则这样的状态转移移过程是无后效性的,则这样的状态转移过程就称为马尔可夫过程。过程就称为马尔可夫过程。几个基本概念 第3页/共24页n状态转移概率。在事件的发展变化过程中,从某一种状态出发,下一时刻转移到其它状态的可能性,称为状态转移概率。由状态Ei转为状态Ej的状态转移概率是(3.7.1)n状态转移概率矩阵。假定某一个事件的发展过程有n个可能的状态,即E1,E2,En。记为从状态Ei转变为状态Ej的状态转移概率 ,则矩阵 几个基本概念 第4页/共24页 称为状态转移概率矩阵。称为状态转移概率矩阵。n n概率矩阵。概率矩阵。一般地,将满足条件(一般地,将满足条件(3.7.33.7.3)的任)的任何矩阵都称为随机矩阵,或概率矩阵。何矩阵都称为随机矩阵,或概率矩阵。(3.7.2)(3.7.3)几个基本概念 不难证明,如果P为概率矩阵,则对于任何整数m0,矩阵都是概率矩阵。第5页/共24页n标准概率矩阵、平衡向量。标准概率矩阵、平衡向量。如果P为概率矩阵,而且存在整数m0,使得概率矩阵 中诸元素皆非零,则称P为标准概率矩阵。可以证明,如果P为标准概率矩阵,则存在非零向量 ,而且 满足 ,使得:(3.7.4)这样的向量称为平衡向量,或终极向量。这就是说,标准概率矩阵一定存在平衡向量。几个基本概念 第6页/共24页n n状态转移概率矩阵的计算。状态转移概率矩阵的计算。计算状态转移概率矩阵计算状态转移概率矩阵P P,就是求,就是求从每个状态转移到其它任何一个状态的从每个状态转移到其它任何一个状态的状态转移概率状态转移概率 。为了求出每一个,一般采用频率近为了求出每一个,一般采用频率近似概率的思想进行计算。似概率的思想进行计算。几个基本概念 第7页/共24页n n例题例题1 1:考虑某地区农业收成变化的三个状考虑某地区农业收成变化的三个状态,即态,即“丰收丰收”、“平收平收”和和“欠收欠收”。记记E E1 1为为“丰收丰收”状态,状态,E E2 2为为“平收平收”状状态,态,E E3 3为为“欠收欠收”状态。表状态。表3.7.13.7.1给出了给出了该地区该地区1960196019991999年期间农业收成的状年期间农业收成的状态变化情况。试计算该地区农业收成变态变化情况。试计算该地区农业收成变化的状态转移概率矩阵。化的状态转移概率矩阵。第8页/共24页表表表表3.7.13.7.13.7.13.7.1某地区农业收成变化的状态转移情况某地区农业收成变化的状态转移情况某地区农业收成变化的状态转移情况某地区农业收成变化的状态转移情况 年份1960196119621963196419651966196719681969序号状态年份序号状态年份序号状态年份序号状态1E1197011E3198021E3199031E12E1197112E1198122E3199132E33E2197213E2198223E2199233E24E3197314E3198324E1199334E15E2197415E1198425E1199435E16E1197516E2198526E3199536E27E3197617E1198627E2199637E28E2197718E3198728E2199738E39E1197819E3198829E1199839E110E2197920E1198930E2199940E2第9页/共24页 从表3.7.1中可以知道,在15个从E1出发(转移出去)的状态中,(1)有3个是从E1转移到E1的(即12,2425,3435)(2)有7个是从E1转移到E2的(即23,910,1213,1516,2930,3536,3940)(3)有5个是从E1转移到E3的(即67,1718,2021,2526,3132)计算:计算:第10页/共24页所以所以第11页/共24页同理可得:同理可得:第12页/共24页 结结论论:该该地地区区农农业业收收成成变变化化的的状状态态转转移概率矩阵为移概率矩阵为(3.6.5)第13页/共24页状状状状态态态态概概概概率率率率及及及及其其其其计计计计算算算算n n状态概率状态概率 :表示事件在初始(:表示事件在初始(k k0 0)状态为已知的条件下,经过)状态为已知的条件下,经过k k次状态转次状态转移后,在第移后,在第k k 个时刻(时期)处于状态个时刻(时期)处于状态 的概率。的概率。且:且:根据马尔可夫过程的无后效性及根据马尔可夫过程的无后效性及BayesBayes条条件概率公式,有件概率公式,有 (3.7.6)(3.7.7)第14页/共24页记行向量记行向量 ,则由(,则由(3.7.73.7.7)式可以得到逐次计算)式可以得到逐次计算状态概率的递推公式:状态概率的递推公式:(3.7.8)式中,为初始状态概率向量。第15页/共24页n n第第第第k k个时刻(时期)的状态概率预测个时刻(时期)的状态概率预测个时刻(时期)的状态概率预测个时刻(时期)的状态概率预测 如果某一事件在第如果某一事件在第0 0个时刻(或个时刻(或时期)的初始状态已知,即时期)的初始状态已知,即 已知,已知,则利用递推公式则利用递推公式(3.7.8)(3.7.8)式,就可以式,就可以求得它经过求得它经过k k次状态转移后,在第次状态转移后,在第k k个个时刻(时期)处于各种可能的状态的时刻(时期)处于各种可能的状态的概率,即概率,即 ,从而就得到该事件,从而就得到该事件在第在第k k个时刻(时期)的状态概率预个时刻(时期)的状态概率预测。测。马尔可夫预测法第16页/共24页例题例题2 2:将例题将例题1 1中中19991999年的农业收成状态记为年的农业收成状态记为 =0,1,0=0,1,0 ,将状态转移概率矩阵,将状态转移概率矩阵(3.7.53.7.5)式及代入递推公式()式及代入递推公式(3.7.83.7.8)式,)式,可求得可求得2000201020002010年可能出现的各种状态年可能出现的各种状态的概率(见表的概率(见表3.7.23.7.2)。)。第17页/共24页表表表表3.7.23.7.23.7.23.7.2某地区某地区某地区某地区19901990199019902000200020002000年农业收成年农业收成年农业收成年农业收成 状态概率预测值状态概率预测值状态概率预测值状态概率预测值 年份200020012002 2003状态概率E10.5385E20.1528E30.3077E10.3024E20.414E30.2837E10.3867E20.3334E30.2799E10.3587E20.3589E30.2779年份2004200520062007状态概率 E10.3677E20.3509E30.2799E10.3647E20.3532E30.2799E10.3656E20.3524E30.2799E10.3653E20.3526E30.2799年份20082009 2010状态概率E10.3653E20.3525E30.2799E10.3653E20.3525E30.2799E10.3653E20.3525E30.2799第18页/共24页终极状态概率预测终极状态概率预测终极状态概率预测终极状态概率预测 定义定义 :经过无穷多次状态转移后所得到:经过无穷多次状态转移后所得到的状态概率称为终极状态概率的状态概率称为终极状态概率 ,即:,即:终极状态概率应满足的条件:终极状态概率应满足的条件:马尔可夫预测法第19页/共24页 例题:在例例题:在例1 1中,设终极状态的状态概率中,设终极状态的状态概率为为 则则第20页/共24页 即:即:求解该方程组得:求解该方程组得:0.36530.3653,0.35250.3525,0.27990.2799。这说明,该地区农业收成的变化过程,这说明,该地区农业收成的变化过程,在无穷多次状态转移后,在无穷多次状态转移后,“丰收丰收”和和“平收平收”状态出现的概率都将大于状态出现的概率都将大于“欠收欠收”状态出状态出现的概率。现的概率。第21页/共24页 在地理事件的预测中,被预测对象所经历的过程中各个阶段(或时点)的状态和状态之间的转移概率是最为关键的。马尔可夫预测的基本方法就是利用状态之间的转移概率矩阵预测事件发生的状态及其发展变化趋势。第22页/共24页 马尔可夫预测法的基本要求是状态转移概率矩阵必须具有一定的稳定性。因此,必须马尔可夫预测法的基本要求是状态转移概率矩阵必须具有一定的稳定性。因此,必须具有足够的统计数据,才能保证预测的精度与准确性。具有足够的统计数据,才能保证预测的精度与准确性。换句话说,马尔可夫预测模型必须建立在大量的统计数据的基础之上。这一点也是运换句话说,马尔可夫预测模型必须建立在大量的统计数据的基础之上。这一点也是运用马尔可夫预测方法预测地理事件的一个最为基本的条件。用马尔可夫预测方法预测地理事件的一个最为基本的条件。第23页/共24页