欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    九年级数学下册第3章圆3.4弧长和扇形的面积圆锥的侧面展开图3.4.2圆锥的侧面积和全面积教学课件湘教版.ppt

    • 资源ID:74905443       资源大小:3.33MB        全文页数:39页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    九年级数学下册第3章圆3.4弧长和扇形的面积圆锥的侧面展开图3.4.2圆锥的侧面积和全面积教学课件湘教版.ppt

    3.4.2 3.4.2 圆锥的侧面积和全面积圆锥的侧面积和全面积1.1.经历探索圆锥侧经历探索圆锥侧(全全)面积计算公式的过程,发展学生面积计算公式的过程,发展学生的实践探索能力的实践探索能力.2.2.了解圆锥的侧了解圆锥的侧(全全)面积计算公式后,能用公式进行计面积计算公式后,能用公式进行计算,训练学生的数学应用能力算,训练学生的数学应用能力.圆锥可以看做是一个直角三圆锥可以看做是一个直角三角形绕它的一条直角边旋转角形绕它的一条直角边旋转一周所形成的图形一周所形成的图形.OABCA AA A2 2A A1 1圆锥知识知多少圆锥知识知多少h hr r母母线线高高底面半径底面半径底面底面侧面侧面B BO O根据图形,圆锥的底根据图形,圆锥的底面半径、母线及其高面半径、母线及其高有什么数量关系?有什么数量关系?BAO设圆锥的底面半径为设圆锥的底面半径为r r,母线长为,母线长为l,高为高为h h,则有:,则有:l2 2r r2 2+h+h2 2即:即:OAOA2 2+OB+OB2 2=AB=AB2 2l填空填空:根据下列条件求值(其中根据下列条件求值(其中r r,h h,l分别是圆锥的底分别是圆锥的底面半径、高线、母线长)面半径、高线、母线长)(1)(1)l=2,r=1 =2,r=1 则则h=_h=_(2)h=3,r=4 (2)h=3,r=4 则则l=_=_(3)(3)l=10,h=8 =10,h=8 则则r=_r=_【跟踪训练跟踪训练】圆锥的侧面积和全面积圆锥的侧面积和全面积圆锥的圆锥的侧面展开图侧面展开图是什么图形是什么图形?设圆锥的母线长为设圆锥的母线长为l,底面半径为底面半径为r,r,(1)(1)此扇形的半径此扇形的半径(R)(R)是是 .(2)(2)此扇形的弧长此扇形的弧长(L)(L)是是 .(3)(3)此圆锥的侧面积此圆锥的侧面积(S(S侧侧)是是 .(4)(4)它的全面积它的全面积(S(S全全)是是 .圆锥的母线圆锥的母线是一个扇形是一个扇形.圆锥底面的周长圆锥底面的周长圆锥的母线与扇形弧长积的一半圆锥的母线与扇形弧长积的一半底面积与侧面积的和底面积与侧面积的和O Or rh hl1.1.根据圆锥的下面条件,求它的侧面积和全面积根据圆锥的下面条件,求它的侧面积和全面积(1 1)r=12cm,r=12cm,l=20cm=20cm(2 2)h=12cm,r=5cm h=12cm,r=5cm 2.2.一个一个圆锥的侧面展开图是半径为圆锥的侧面展开图是半径为18cm,18cm,圆心角为圆心角为240240度的扇形度的扇形.则这个圆锥的底面半径为则这个圆锥的底面半径为_ _ 12cm12cm240 384240 38465 9065 90【跟踪训练跟踪训练】弧长公式:弧长公式:c=c=计算圆心角计算圆心角n n的度数:的度数:如何计算圆锥侧面展开图的圆心角如何计算圆锥侧面展开图的圆心角的度数呢?的度数呢?c cl例例1.1.圆锥形烟囱帽圆锥形烟囱帽(如图如图)的母线长为的母线长为80cm80cm,高为,高为38.7cm,38.7cm,求这个烟囱帽的面积(求这个烟囱帽的面积(取取3.143.14,结果保留,结果保留2 2个有效数字)个有效数字)解解:l=80=80,h=38.7h=38.7r=r=SS侧侧=r=rl3.143.147070801.8801.810104 4(cmcm2 2)答:烟囱帽的面积约为答:烟囱帽的面积约为1.81.810104 4cmcm2 2.【例题例题】一个圆锥形的零件一个圆锥形的零件,经过轴的剖面是一个等腰三角形经过轴的剖面是一个等腰三角形,这个三角形就叫做圆锥的轴截面;它的腰长等于圆锥的这个三角形就叫做圆锥的轴截面;它的腰长等于圆锥的母线长母线长,底边长等于圆锥底面的直径底边长等于圆锥底面的直径.圆锥的轴截面圆锥的轴截面A A A AB B B BC C C CO O O O如如ABCABC就是圆锥的轴截面就是圆锥的轴截面例例2.2.已知一个圆锥的轴截面已知一个圆锥的轴截面ABCABC是等边三角形是等边三角形,它的表它的表面积为面积为75752 2,求这个圆锥的底面半径和母线的长求这个圆锥的底面半径和母线的长.解:解:圆锥轴截面圆锥轴截面ABCABC是等边三角形是等边三角形l=2r=2rrr2r+r2r+r2 2=75=75r=5 cmr=5 cm,l=10 cm=10 cm答:答:圆锥的底面半径为圆锥的底面半径为5cm5cm,母线长为,母线长为10cm.10cm.A A A AB B B BC C C CO O O O【例题例题】例例3.3.圣诞节将近圣诞节将近,某家商店正在制作圣诞节的圆锥形纸某家商店正在制作圣诞节的圆锥形纸帽帽.已知纸帽的底面周长为已知纸帽的底面周长为58cm58cm,高为,高为20cm20cm,要制作,要制作2020顶顶这样的纸帽至少要用多少平方厘米的纸?(结果精确到这样的纸帽至少要用多少平方厘米的纸?(结果精确到0.1cm0.1cm2 2)【例题例题】解:解:设纸帽的底面半径为设纸帽的底面半径为rcmrcm,母线长为,母线长为lcmcm,638.87638.8720=12777.4(cm20=12777.4(cm2 2)所以所以,至少要至少要12777.4 cm12777.4 cm2 2的纸的纸.1.1.高为,底面直径为的圆锥侧面积为高为,底面直径为的圆锥侧面积为cmcm2 2.2.2.圆锥的母线与高的夹角为圆锥的母线与高的夹角为3030,母线长为,母线长为6cm,6cm,则它的则它的侧面积为侧面积为 cmcm,全面积为,全面积为 cm.cm.3.3.若圆锥的母线若圆锥的母线l=10cm=10cm,高,高h=8cmh=8cm,则其侧面展开图中扇,则其侧面展开图中扇形的圆心角是形的圆心角是.181827272162161515 (结果可含(结果可含)【跟踪训练跟踪训练】4.4.已知圆锥底面半径为已知圆锥底面半径为10cm10cm,母线长为,母线长为40cm.40cm.(1)(1)求它的侧面展开图的圆心角和全面求它的侧面展开图的圆心角和全面积积.(2)(2)若一甲虫从圆锥底面圆上一点若一甲虫从圆锥底面圆上一点A A出发,出发,沿着圆锥侧面绕行到母线沿着圆锥侧面绕行到母线ABAB的中点的中点C C,它所走的最短路程是多少?它所走的最短路程是多少?lh hr rO OA AB Bh hr rO OA AB Bl解:解:(1)C(1)C底面底面=2r=20=2r=20答:答:侧面展开图的圆心角为侧面展开图的圆心角为9090,全面积为,全面积为500500cmcm2 2.l l=40=40A AB BC C(2)(2)连结连结ACAC,甲虫所走最短路程就是起点与终甲虫所走最短路程就是起点与终点间的距离,即线段点间的距离,即线段ACAC的长的长.由由(1)(1)得,得,B=90B=90在在RtABCRtABC中,中,AB=40cmAB=40cm,BC=20cmBC=20cm则甲虫所走的最短路程为则甲虫所走的最短路程为5.5.如图,在正方形铁皮上剪下一个圆形和扇形,使之恰好如图,在正方形铁皮上剪下一个圆形和扇形,使之恰好围成一个圆锥模型,设圆的半径为围成一个圆锥模型,设圆的半径为r r,扇形半径为,扇形半径为R R,则圆,则圆的半径与扇形半径之间的关系为的半径与扇形半径之间的关系为()()A.R=2r B.A.R=2r B.C.R=3r D.R=4rC.R=3r D.R=4rD D6.6.若一个圆锥的底面半径为若一个圆锥的底面半径为3 3,母线长为,母线长为5 5,则它的侧面展,则它的侧面展开图的圆心角是开图的圆心角是()()A.60 B.90A.60 B.90C.120 D.216C.120 D.2167.7.如图,圆柱的轴截面如图,圆柱的轴截面ABCDABCD是边长为是边长为4 4的正的正方形,动点方形,动点P P从从A A点出发,沿着圆柱的侧面移点出发,沿着圆柱的侧面移动到动到BCBC的中点的中点S S的最短路径长为的最短路径长为 ()()A.2 B.2A.2 B.2C.4 D.2C.4 D.2D DA A8.8.李李明明同同学学和和马马强强同同学学合合作作,将将半半径径为为1 1米米,圆圆心心角角为为9090的的扇扇形形薄薄铁铁板板围围成成一一个个圆圆锥锥筒筒.在在计计算算圆圆锥锥的的容容积积(接接缝缝忽忽略略不不计计)时时,李李明明认认为为圆圆锥锥的的高高就就等等于于扇扇形形的的圆圆心心O O到到弦弦ABAB的的距距离离OC(OC(如如图图),马马强强说说这这样样计计算算不不正正确确,你你同同意意谁谁的说法的说法?说说你的理由说说你的理由.分析:分析:此题首先要弄清圆锥的有关概念,如圆锥的高,侧此题首先要弄清圆锥的有关概念,如圆锥的高,侧面展开图,侧面展开图中扇形的半径,弧长各是多少面展开图,侧面展开图中扇形的半径,弧长各是多少.与与圆锥的母线长,底面圆半径的关系是什么圆锥的母线长,底面圆半径的关系是什么.此题中,圆锥此题中,圆锥的高是图中的高是图中SO.SO.因此,我同意马强的说法,计算如下:因此,我同意马强的说法,计算如下:OOAAS S9.9.已知:在已知:在RtRtABCABC中,中,C=90C=90,AB=13cm,BC=5cm.AB=13cm,BC=5cm.CDABCDAB于点于点D.D.求以求以ABAB为轴旋转一周所得到的几何体的全为轴旋转一周所得到的几何体的全面积面积.旋转得到怎样的几何体?旋转得到怎样的几何体?分析:分析:以以ABAB为轴旋转一周所得到的几何体为轴旋转一周所得到的几何体是由公共底面的两个圆锥所组成的几何体,是由公共底面的两个圆锥所组成的几何体,因此求全面积就是求两个圆锥的侧面积因此求全面积就是求两个圆锥的侧面积.两个圆锥的母线、底两个圆锥的母线、底面半径各是多少呢?面半径各是多少呢?在在RtABCRtABC中,中,解:解:由勾股定理得:由勾股定理得:AC=12AC=12,C C底面底面=2=2CD=CD=SS全面积全面积=这个几何体的全面积为这个几何体的全面积为1.1.(广州(广州中考)将如中考)将如图图所示的直角梯形所示的直角梯形绕绕直直线线l旋旋转转一一周,得到的立体周,得到的立体图图形是(形是()答案答案:C CA AB BC CD D2.2.(莱芜(莱芜中考)已知圆锥的底面半径长为中考)已知圆锥的底面半径长为5 5,侧面展开,侧面展开后得到一个半圆,则该圆锥的母线长为后得到一个半圆,则该圆锥的母线长为()()A A2.5 B2.5 B5 C5 C10 D10 D1515答案答案:C C3.3.(衢州(衢州中考)小刚中考)小刚用一张半径为用一张半径为24cm24cm的扇形纸的扇形纸板做一个如图所示的圆锥形板做一个如图所示的圆锥形小丑帽子侧面小丑帽子侧面(接缝忽略不计接缝忽略不计),如果做成的圆锥形小丑,如果做成的圆锥形小丑帽子的底面半径为帽子的底面半径为10cm10cm,那么这张扇形纸板的面积是,那么这张扇形纸板的面积是()()A.120cmA.120cm2 2B.240cmB.240cm2 2C.260cmC.260cm2 2D.480cmD.480cm2 2答案答案:B B24cm4.4.(济济宁宁中考)如中考)如图图,如果从半径,如果从半径为为9cm9cm的的圆圆形形纸纸片剪去片剪去 圆周的一个扇形,将留下的扇形围成一个圆锥圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为(接缝处不重叠),那么这个圆锥的高为()()答案答案:B B剪去D D cmcmA A6cm6cmB BcmcmC C8cm8cm5.5.(桂林(桂林中考)一个圆锥的侧面展开图是半径为中考)一个圆锥的侧面展开图是半径为1 1的的半圆,则该圆锥的底面半径是半圆,则该圆锥的底面半径是()()A.1 B.C.D.A.1 B.C.D.答案答案:C C【规律方法规律方法】圆锥的侧面展开图是一个扇形圆锥的侧面展开图是一个扇形,若圆锥母若圆锥母线长为线长为l,底面半径为底面半径为r r,那么这个扇形的半径为,那么这个扇形的半径为l,扇形,扇形的弧长为的弧长为2 2r r,因此圆锥的侧面积为,因此圆锥的侧面积为r rl,这里涉及的这里涉及的两个半径一定要分清楚两个半径一定要分清楚.(1 1)圆锥的侧面展开图是个扇形)圆锥的侧面展开图是个扇形(2 2)圆锥的母线长是该扇形的半径)圆锥的母线长是该扇形的半径(3 3)圆锥底面圆周长为该扇形的弧)圆锥底面圆周长为该扇形的弧长长(4 4)圆锥的侧面积为该扇形的面积)圆锥的侧面积为该扇形的面积(5 5)圆锥的侧面积与底面积之和称)圆锥的侧面积与底面积之和称为全面积为全面积 知识给人重量,成就给人光彩,大多数知识给人重量,成就给人光彩,大多数人只是看到了光彩,而不去称重量人只是看到了光彩,而不去称重量.

    注意事项

    本文(九年级数学下册第3章圆3.4弧长和扇形的面积圆锥的侧面展开图3.4.2圆锥的侧面积和全面积教学课件湘教版.ppt)为本站会员(飞****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开