欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    24二次函数的应用(第1课时)演示文稿.ppt

    • 资源ID:75222722       资源大小:457KB        全文页数:16页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    24二次函数的应用(第1课时)演示文稿.ppt

    第二章 二次函数2.4 二次函数的应用(第1课时)(1)请用长20米的篱笆设计一个矩形的菜园。(2)怎样设计才能使矩形菜园的面积最大?ABCD解:设矩形的一边长为 米,面积为 平方米,则 当 时,此时另一边长为10-5=5(米)因此当矩形的长和宽均为5米时,矩形的面积最大。情境引入ABCD 例1.如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为 米,面积为S平方米。(1)求S与 的函数关系式及自变量的取值范围;(2)当 取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,求围成花圃的最大面积.(3)由题意得:因此当 =3时,所围成的花圃面积最大,为36平方米.(1)由题意得:m m解得:因为 ,所以当 时,随 的增大而减小(2)当 时,当 4m时,即围成花圃的最大面积为32平方米.解:ABCD(1).设矩形的一边AB=xm,那么AD边的长度如何表示?(2).设矩形的面积为 m2,当 取何值时,的值最大,最大值是多少?w如果在一个直角三角形的内部画一个矩形ABCD,其中AB和AD分别在两直角边上,30mM40mABCDN变式探究一如果把矩形改为如下图所示的位置,其顶点A和顶点D分别在两直角边上,BC在斜边上.其他条件不变,那么矩形的最大面积是多少?ABCDMNP40m30mHG请一名同学板演过程变式探究二如图,已知ABC是一等腰三角形铁板余料,AB=AC=20cm,BC=24cm.若在ABC上截出一矩形零件DEFG,使得EF在BC上,点D、G分别在边AB、AC上.问矩形DEFG的最大面积是多少?CFEBGDAMN变式探究三 某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有 的黑线的长度和)为15m.(1)用含 的代数式表示 ;(2)当 等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?练习例2.在矩形ABCD中,AB6 ,BC12 ,点P从点A出发沿AB边向点B以1 /秒的速度移动,同时,点Q从点B出发沿BC边向点C以2 /秒的速度移动。如果P、Q两点在分别到达B、C两点后就 停止移动,设运动时间为t秒(0t6),回答下列问题:(1)运动开始后第几秒时,PBQ的面积等于8 ;(2)设五边形APQCD的面积为S ,写出S与t的函数关系式,t为何值时 S最小?求出S的最小值。QPCBADQPCBAD解:(1)由题意得:解得:运动开始后2秒或4秒时,PBQ的面积等于8 .(2)由题意得:当 时,即 时,有最小值,最小值为63“二次函数应用”的思路 w1.理解问题;w2.分析问题中的变量和常量,以及它们之间的关系;w3.用数学的方式表示出它们之间的关系;w4.运用数学知识求解;w5.检验结果的合理性,给出问题的解答.构建二次函数模型构建二次函数模型归纳总结1.一根铝合金型材长为6m,用它制作一个“日”字型的窗框,如果恰好用完整条铝合金型材,那么窗架的长、宽各为多少米时,窗架的面积最大?巩固练习1.如图,在RtABC中,ACB=90,AB=10,BC=8,点D在BC上运动(不运动至B,C),DEAC,交AB于E,设BD=,ADE的面积为 .(1)求 与 的函数关系式及自变量 的取值范围;(2)为何值时,ADE的面积最大?最大面积是多 少?拓展提升D.有一根直尺的短边长有一根直尺的短边长2 ,长边长,长边长10 ,还有一块锐角为,还有一块锐角为45的直角三角形纸板,其中直角三角形纸板的斜边长为的直角三角形纸板,其中直角三角形纸板的斜边长为12 按图按图1的方式将直尺的短边的方式将直尺的短边DE放置在直角三角形纸板的斜边放置在直角三角形纸板的斜边AB上,且点上,且点D与点与点A重合若直尺沿射线重合若直尺沿射线AB方向平行移动,如图方向平行移动,如图2,设平移的长度为,设平移的长度为(),直尺和三角形纸板的重叠部分),直尺和三角形纸板的重叠部分(即图即图中阴影部分中阴影部分)的面积为的面积为S (1)当)当 =0时,时,S=_;当当 =10时,时,S=_;(2)当)当0 4时,如图时,如图2,求,求S与与 的函数关系式;的函数关系式;(3)当)当6 10时,求时,求S与与 的函数关系式;的函数关系式;(4)请你作出推测:当)请你作出推测:当 为何值时,阴影部分的面积最大?并为何值时,阴影部分的面积最大?并 写出最大值写出最大值ABC备选图二xFEGABC图2ABC备选图一图1(D)EFCBA谈谈本节课的收获作业习题2.8 1,2

    注意事项

    本文(24二次函数的应用(第1课时)演示文稿.ppt)为本站会员(s****8)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开