2019高中物理 第16章 动量守恒定律单元练习 新人教版选修3-5.doc
-
资源ID:752852
资源大小:221.98KB
全文页数:8页
- 资源格式: DOC
下载积分:2金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2019高中物理 第16章 动量守恒定律单元练习 新人教版选修3-5.doc
1动量守恒定律动量守恒定律一选择题(共一选择题(共 7 7 小题)小题) 1一枚火箭搭载着卫星以速率 v0进入太空预定位置,由控制系统使箭体与卫星分离已 知前部分的卫星质量为 m1,后部分的箭体质量为 m2,分离后箭体以速率 v2沿火箭原方向飞 行,若忽略空气阻力及分离前后系统质量的变化,则分离后卫星的速率 v1为( ) Av0v2Bv0+v2Cv0v2Dv0+(v0v2)2质量为 m 的物块甲以 3m/s 的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为 m 的物块乙以 4m/s 的速度与甲相向运动,如图所示,则( ) A甲、乙两物块在弹簧压缩过程中,由于弹力作用,动量不守恒 B当两物块相距最近时,物块甲的速率为零 C当物块甲的速率为 1m/s 时,物块乙的速率可能为 2m/s,也可能为 0 D物块甲的速率可能达到 5m/s 3如图所示,小车静止在光滑水平面上,AB 是小车内半圆弧轨道的水平直径,现将一小 球从距 A 点正上方 h 高处由静止释放,小球由 A 点沿切线方向经半圆轨 道后从 B 点冲出,在空中能上升的最大高度为 0.8h,不计空气阻 力下列说法正确的是( ) A在相互作用过程中,小球和小车组成的系统动量守恒 B小球离开小车后做竖直上抛运动 C小球离开小车后做斜上抛运动 D小球第二次冲出轨道后在空中能上升的最大高度为 0.6h 4如图所示,足够长的小平板车 B 的质量为 M,以水平速度 0向右在光滑水平面上运动, 与此同时,质量为 m 的小物体 A 从车的右端以水平速度 0沿车的粗糙上表面向左运 动若物体与车面之间的动摩擦因数为 ,则在足够长的时间内( )A若 Mm,物体 A 对地向左的最大位移是B若 Mm,小车 B 对地向右的最大位移是C无论 M 与 m 的大小关系如何,摩擦力对平板车的冲量均为 m0D无论 M 与 m 的大小关系如何,摩擦力的作用时间均为52018 平昌冬奥会短道速滑男子 5000 米接力赛,中国队夺得银牌。观 察发现, “接棒”的运动员甲提前站在“交棒”的运动员乙前面,并且开 始向前滑行,待乙追上甲时,乙猛推甲一把,使甲获得更大的速度向前 冲出。在乙推甲的过程中,忽略运动员与冰面间在水平方向上的相互作 用,则( )2A甲对乙的冲量一定等于乙对甲的冲量 B甲、乙的动量变化一定大小相等方向相反 C甲的动能增加量一定等于乙的动能减少量 D甲对乙做多少负功,乙对甲就一定做多少正功 6如图所示,一个木箱原来静止在光滑水平面上,木箱内粗糙的底板上放着一个小木 块木箱和小木块都具有一定的质量现使木箱获得一个向右的 初速度 v0,则( ) A小木块和木箱最终都将静止 B小木块最终将相对木箱静止,二者一起向右运动 C小木块在木箱内壁将始终来回往复碰撞,而木箱一直向右运动 D如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起向左运动 7如图所示,质量为 M 的木块位于光滑水平面上,在木块与墙之间用轻弹簧连接,开始时 木块静止在 A 位置现有一质量为 m 的子弹以水平速度 v0射向木块并嵌入其中,则当木块 回到 A 位置时的速度 v 以及此过程中墙对弹簧的冲量 I 的大小分别为( )Av=,I=0 Bv=,I=2mv0Cv=,I=Dv=,I=2mv0 二多选题(共二多选题(共 4 4 小题)小题) 8如图所示, (a)图表示光滑平台上,物体 A 以初速度 v0滑到上表面粗糙的水平小车上, 车与水平面间的动摩擦因数不计, (b)图 为物体 A 与小车 B 的 vt 图象,由此可 知( ) A小车上表面长度 B物体 A 与小车 B 的质量之比 CA 与小车 B 上表面的动摩擦因数 D小车 B 获得的动能 9如图甲所示,一轻弹簧的两端与质量分别为 m1和 m2的两物块 A、B 相连接,并静止在光 滑的水平面上现使 A 瞬时获得水平向右的速度 3m/s,以此刻为计时起点,两物块的速度 随时间变化的规律如图乙所示,从图象信息可得( )A在 t1、t3时刻两物块达到共同速度 1m/s,且弹簧都是处于压缩状态 B从 t3到 t4时刻弹簧由压缩状态恢复到原长 C两物体的质量之比为 m1:m2=1:2 D在 t2时刻 A 与 B 的动能之比为 Ek1:Ek2=1:8 10如图所示:一轻弹簧左端固定在足够长的木块 A 的左端挡板上,右端与小物块 B 连接, A、B 及 A 与地面间的接触面均光滑开始时,A 和 B 均静止,现同时对 A、B 施加大小相等、3方向相反的水平恒力 F1和 F2则从两物体开始运动到以后的整个运动过程中(弹簧形变始 终不超过其弹性限度) ,对 A、B 和弹簧组成的系统,正确的说法是( ) A由于 F1、F2大小相等、方向相反,故系统动量守恒 B由于 F1、F2大小相等、方向相反,故系统机械能守恒 C当弹簧的弹力与 F1、F2大小相等时,A、B 的动能均达到最大值 D当弹簧的形变量最大时,A、B 均处于平衡状态 11如图甲所示,在光滑水平面上的两个小球发生正碰,小球的质量分别为 m1和 m2,图乙 为它们碰撞前后的 xt 图象。已知 m1=0.1kg。由此可以判断( ) A碰前 m2静止,m1向右运动 B碰后 m2和 m1都向右运动 C由动量守恒可以算出 m2=0.3kg D碰撞过程中系统损失了 0.4J 的机械能 三计算题(共三计算题(共 3 3 小题)小题) 12如图,光滑冰面上静止放置一表面光滑的斜 面体,斜面体右侧一蹲在滑板上的小孩和其面前 的冰块均静止于冰面上。某时刻小孩将冰块以相 对冰面 3m/s 的速度向斜面体推出,冰块平滑地 滑上斜面体,在斜面体上上升的最大高度为 h=0.3m(h 小于斜面体的高度) 。已知小孩与滑板 的总质量为 m1=30kg,冰块的质量为 m2=10kg,小孩与滑板始终无相对运动。取重力加速度 的大小 g=10m/s2。 (i)求斜面体的质量; (ii)通过计算判断,冰块与斜面体分离后能否追上小孩?13如图所示,固定的光滑圆弧面与质量为 6kg 的小车 C 的上表面平滑相接,在圆弧面上 有一个质量为 2kg 的滑块 A,在小车 C 的左端有一个质量为 2kg 的滑块 B,滑块 A 与 B 均可 看做质点。现使滑块 A 从距小车的上表面高 h=1.25m 处由静止下滑,与 B 碰撞后瞬间粘合 在一起共同运动,最终没有从小车 C 上滑出。已知滑块 A、B 与小车 C 的动摩擦因数均为 =0.5,小车 C 与水平地面的摩擦忽略不计,取 g=10m/s2求: (1)滑块 A 与 B 碰撞后瞬间的共同速度的大小; (2)小车 C 上表面的最短长度。414如图,A、B、C 三个木块的质量均为 m置于光滑的水平面上,B、C 之间有一轻质弹 簧,弹簧的两端与木块接触可不固连将弹簧压紧到不能再压缩时用细线把 B 和 C 紧连, 使弹簧不能伸展,以至于 B、C 可视为一个整体现 A 以初速 v0沿 B、C 的连线方向朝 B 运 动,与 B 相碰并粘合在一起以后细线突然断开,弹簧伸展,从而使 C 与 A、B 分离已知 C 离开弹簧后的速度恰为 v0求弹簧释放的势能5动量守恒定律练习动量守恒定律练习 参考答案与试题解析参考答案与试题解析一选择题(共一选择题(共 7 7 小题)小题) 1 【解答】解:火箭和卫星组成的系统在分离时水平方向上动量守恒,规定初速度的方向 为正方向,有:(m1+m2)v0=m2v2+m1v1解得:。故 D 正确,A、B、C 错误。故选:D。 2 【解答】解:A、甲、乙两物块在弹簧压缩过程中,系统所受的合外力为零,动量守恒。 故 A 错误。B、当两物块相距最近时速度相同,取碰撞前乙的速度方向为正方向,设共同速率为 v,根据动量守恒定律得到 mv乙mv甲=2mv,解得 v=0.5m/s。故 B 错误。C、若物块甲的速率为 1m/s,方向与原来相同,则由 mv乙mv甲=mv甲+m乙v乙 ,代入解得 v乙=2m/s。若物块甲的速率为 1m/s,方向与原来相反,则由 mv乙mv甲=mv甲+m乙v乙,代入解得 v乙=0故 C 正确。D、若物块甲的速率达到 5m/s,方向与原来相同,则 mv乙mv甲=mv甲+m乙v乙 ,代入解得 v乙=6m/s。两个物体的速率都增大,动能都增大,违反了能量守恒定律。若 物块甲的速率达到 5m/s,方向与原来相反,则 mv乙mv甲=mv甲+m乙v乙,代入解得 v乙=4m/s,可以,碰撞后,乙的动能不变,甲的动能增加,系统总动能增加,违反了能 量守恒定律。所以物块甲的速率不可能达到 5m/s。故 D 错误。故选:C。 3 【解答】解:A、小球与小车组成的系统在水平方向不受外力,水平方向系统动量守恒, 但系统所受的合外力不为零,所以系统动量不守恒,故 A 错误; BC、小球与小车组成的系统在水平方向动量守恒,可知系统水平方向的总动量保持为零。 小球由 B 点离开小车时系统水平方向动量为零,小球与小车水平方向速度为零,所以小球 离开小车后做竖直上抛运动,故 B 正确,C 错误; D、小球第一次车中运动过程中,由动能定理得:mg(h0.8h)Wf=0,Wf为小球克服摩 擦力做功大小,解得:Wf=0.2mgh,即小球第一次在车中滚动损失的机械能为 0.2mgh,由 于小球第二次在车中滚动时,对应位置处速度变小,因此小车给小球的弹力变小,摩擦力 变小,摩擦力做功小于 0.2mgh,机械能损失小于 0.2mgh,因此小球再次离开小车时,能上 升的高度大于 0.8h0.2h=0.6h,故 D 错误;故选:B。 4 【解答】解:以向右为正方向,根据动量守恒定律有:Mv0mv0=(M+m)v解得:v=。A、若 Mm,A 所受的摩擦力 f=mg,对 A,根据动能定理得:mgxA=0,则得物体 A 对地向左的最大位移 xA=故 A 错误。B、若 Mm,对 B,由动能定理得:mgxB=0,则得小车 B 对地向右的最大位移 xB=6C、根据动量定理知,摩擦力对平板车的冲量等于平板车动量的变化量,即 I=MvMv0=故 C 错误。D、根据动量定理得,ft=MvMv0,f=mg,解得:t=故 D 正确。故选:D。5 【解答】解:A、因为冲量是矢量,甲对已的作用力与乙对甲的作用力大小相等方向相 反,故冲量大小相等方向相反,故 A 错误。 BCD、设甲乙两运动员的质量分别为 m甲、m乙,追上之前的瞬间甲、乙两运动员的速度分 别是 v甲,v乙,根据题意整个交接棒过程可以分为两部分: 完全非弹性碰撞过程“交棒” ;m甲v甲+m乙v乙=(m甲+m乙)v共 向前推出(人船模型) “接棒” (m甲+m乙)v共=m甲v甲+m乙v乙 由上面两个方程联立可以解得:m甲v甲=m乙v乙,即 B 选项正确。经历了中间的完全 非弹性碰撞过程 会有动能损失,C、D 选项错误。故选:B。6 【解答】解:系统所受外力的合力为零,动量守恒,初状态木箱有向右的动量,小木 块动量为零,故系统总动量向右,系统内部存在摩擦力,阻碍两物体间的相对滑动,最终 相对静止,由于系统的总动量守恒,不管中间过程如何相互作用,根据动量守恒定律,最 终两物体以相同的速度一起向右运动。故选:B。7 【解答】解:子弹射入木块过程,由于时间极短,子弹与木块间的内力远大于系统外力,由动量守恒定律得:mv0=(M+m)v 解得:v=子弹和木块系统在弹簧弹力的作用下先做减速运动,后做加速运动,回到 A 位置时速度大小不变,即当木块回到 A 位置时的速度大小 v=;子弹和木块弹簧组成的系统受到的合力即可墙对弹簧的作用力,根据动量定理得: I=(M+m)vmv0=2mv0所以墙对弹簧的冲量 I 的大小为 2mv0故选:B。 二多选题(共二多选题(共 4 4 小题)小题) 8 【解答】解:A、由图象可知,AB 最终以共同速度 v1匀速运动,不能确定小车上表面长 度,故 A 错误;B、由动量守恒定律得,mAv0=(mA+mB)v1,解得:,故可以确定物体 A 与小车B 的质量之比,故 B 正确;C、由图象可以知道 A 相对小车 B 的位移x=v0t1,根据能量守恒得:mAgmA,根据 B 中求得质量关系,可以解出动摩擦因数,故 C 正确; D、由于小车 B 的质量不可知,故不能确定小车 B 获得的动能,故 D 错误。 故选:BC。9 【解答】解:A、由图可知 t1到 t3时间内两物块之间的距离逐渐增大,t3时刻达到共 同速度,此时弹性势能最大,弹簧处于伸长状态,故 A 错误; B、结合图象弄清两物块的运动过程,开始时 m1逐渐减速,m2逐渐加速,弹簧被压缩,t17时刻二者速度相等,系统动能最小,势能最大,弹簧被压缩最厉害,然后弹簧逐渐恢复原 长,m2依然加速,m1先减速为零,然后反向加速,t2时刻,弹簧恢复原长状态,由于此时 两物块速度相反,因此弹簧的长度将逐渐增大,两木块均减速,当 t3时刻,二木块速度相 等,系统动能最小,弹簧最长,因此从 t3到 t4过程中弹簧由伸长状态恢复原长,故 B 错误;C、系统动量守恒,选择开始到 t1时刻列方程可知:m1v1=(m1+m2)v2,将 v1=3m/s,v2=1m/s 代入得:m1:m2=1:2,故 C 正确; D、在 t2时刻 A 的速度为:vA=1m/s,B 的速度为:vB=2m/s,根据 m1:m2=1:2,求出 Ek1:Ek2=1:8,故 D 正确。故选:CD。10 【解答】解:对 A、B 和弹簧组成的系统所受合外力为零,因此系统动量守恒,故 A 正确; 由于 F1、F2均对系统做正功,因此系统机械能不守恒,机械能增加,故 B 错误; 根据牛顿第二定律可知,开始 A、B 均做加速度逐渐减小的加速运动,当 F1=F2=Kx 时, A、B 所受合外力均为零,此时二者速度最大,动能最大,然后开始做加速度逐渐增大的减 速运动,当二者速度减为零时,弹簧最长,型变量最大,故 C 正确,D 错误。故选:AC。 11 【解答】解:A、由 st(位移时间)图象的斜率得到,碰前 m2的位移不随时间而变化,处于静止。m1向速度大小为 v1=4m/s,方向只有向右才能与 m2相撞。故 A 正确。B、由图读出,碰后 m2的速度为正方向,说明向右运动,m1的速度为负方向,说明向左运 动。故 B 错误。 C、由图求出碰后 m2和 m1的速度分别为 v2=2m/s,v1=2m/s,根据动量守恒定律得, m1v1=m2v2+m1v1,代入解得,m2=0.3kg。故 C 正确。D、碰撞过程中系统损失的机械能为E=,代入解得,E=0,故 D 错误。故选:AC。 三计算题(共三计算题(共 3 3 小题)小题) 12 【解答】解:(i)对于冰块和斜面体组成的系统,根据动量守恒可得, m2v2=(m2+M)v根据系统的机械能守恒,可得,m2gh+(m2+M)v2=m2v22解得:M=20kg(ii)小孩与冰块组成的系统,根据动量守恒可得,m1v1=m2v2, 解得 v1=1m/s(向右) 冰块与斜面:m2v2=m2v2+Mv3,根据机械能守恒,可得,m2v22=m2v22+Mv32解得:v2=1m/s(向右) 因为 v2=v1,所以冰块不能追上小孩。 13 【解答】解:(1)滑块 A 下滑过程机械能守恒,由机械能守恒定律得:mAgh=mAv12,代入数据解得:v1=5m/s,A、B 碰过程系统动量守恒,以 A 的初速度方向为正方向,由动量守恒定律得: mAv1=(mA+mB)v2,代入数据解得:v2=2.5m/s; (2)A、B、C 三者组成的系统动量守恒,以 A 的初速度方向为正方向,由动量守恒定律得: (mA+mB)v2=(mA+mB+mC)v3,代入数据解得:v3=1m/s;8由能量守恒定律得:(mA+mB)gL=(mA+mB)v22(mA+mB+mC)v32,代入数据解得:L=0.375m; 14 【解答】解:取水平向右的方向为正,设碰后 A、B 和 C 的共同速度为 v,由动量守恒 得:3mv=mv0 设 C 离开弹簧时,A、B 的速度为 v1,由动量守恒得:3mv=2mv1+mv0 设弹簧的弹性势能为 Ep,从细线断开到 C 与弹簧分开的过程中机械能守恒,有:由式得弹簧所释放的势能为: