1.3非法拉第过程分析.ppt
1.3 非法拉第过程及电极/溶液界面的性能法拉第过程:电极上发生氧化还原反应(电极反应)并 伴随电子在金属-溶液界面间转移(跃迁)的过程。这一过程遵守法拉第定律,即:因电流通过而引起的化学反应的量与所通过的电量成正比。电极反应导致的电流法拉第电流非法拉第过程:在电极-溶液界面间没有电荷转移,但是随 着电势变化,由于吸附和脱附过程发生以及双电层的充放电,导致电极-溶液界面结构发生变化,并引起电流流动,这种电流流动过程称为非法拉第过程。不遵循法拉第定律。1.3.1 界面电荷层界面电荷层1.3.2 双电层的结构双电层的结构1.3.3 研究电极溶液界面性质的意义研究电极溶液界面性质的意义1.3.4 零电荷电势零电荷电势1.3.1 界面电荷层双电层(double layer):由于电极和溶液界面带有的电荷符号相反,故电极/溶液界面上的荷电物质能部分地定向排列在界面两侧。当性质不同的相接触时,在相界面上形成了不同性质的电势差。出现电势差的原因是带电粒子或偶极子在界面层中的非均匀分布。1.3.1.1 界面电荷层的形成+MS+MSMS+(a)离子双电层(b)吸附双电层(c)偶极双电层自发形成的双电层1.3.2 双电层的结构 在电极溶液界面存在着两种相间相互作用:(1)电极与溶液两相中的剩余电荷所引起的静电长程作用;(2)电极和溶液中各种粒子(离子、溶质分子、溶剂分子等等)之间的短程作用,如特性吸附、偶极子定向排列等,它只在几个的距离内发生。电极溶液界面的基本结构静电作用使得符号相反的剩余电荷力图相互靠近,形成紧密的双电层结构,简称紧密层。热运动处使荷电粒子倾向于均匀分布,从而使剩余电荷不可能完全紧贴着电极表面分布,而具有一定的分散性,形成分散层。电极溶液界面的紧密双电层结构考虑了热运动干扰时的电极溶液界面双电层结构在金属相中,自由电子的浓度很大,可达1025 mol/dm3,少量剩余电荷在界面的集中并不会明显破坏自由电子的均匀分布,因此可以认为金属中全部剩余电荷都是紧密分布的,金属内部各点的电势均相等。在溶液相中,当溶液总浓度较高,电极表面电荷密度较大时,由于离子热运动较困难,对剩余电荷分布的影响较小,而电极与溶液间的静电作用较强,对剩余电荷的分布起主导作用,溶液中的剩余电荷也倾向于紧密分布,形成紧密双电层。如果溶液总浓度较低,或电极表面电荷密度较小,那么离子热运动的作用增强,而静电作用减弱,形成紧密与分散层共存的结构。如果由半导体材料和电解质溶液组成电极体系,那么在固相中,由于载流子浓度较小(约为1017 mol/dm3),则剩余电荷的分布也将具有一定的分散性。金属与稀溶液界面的双电层结构半导体与稀溶液界面的双电层结构一、双电层结构模型1.Helmholtz模型(1879)“平板电容器”模型或“紧密双电层”模型。电极表面上和溶液中的剩余电荷都紧密地排列在界面两侧,形成类似平板电容器的界面双电层结构(金属电极/高浓度溶液时)。紧密层优点:基本上可以解释界面张力随电极电势变化的规律和微分电容曲线上零电荷电势两侧各出现一个平台区;缺点:无法解释为什么在稀溶液中微分电容曲线上零电荷电势处会出现极小值,也没有触及微分电容曲线的精细结构(即电容随电极电势和溶液浓度变化而变化)。-电荷密度-介电常数2.Gouy-Chapman模型(扩散层模型)(1910-1913)扩散层零电荷电势无紧密层 溶液中的离子在静电作用和热运动作用下,按势能场中粒子的分配规律(Boltzmann分布律)分布在邻近界面的液层中,即形成“分散层”。分散层中的电势与距离呈曲线关系。优点:假设离子电荷为理想的点电荷,可以较满意地解释稀溶液中零电荷电势附近出现的电容极小值;缺点:完全忽略了紧密层的存在,因而当溶液浓度较高或表面电荷密度值较大时,计算得出的电容值远大于实验测得的数值,而且解释不了微分电容曲线上“平台区”的出现。3.Stern模型(1924)Gouy-Chapman-Stern(GCS)模型溶液中离子受到电极表面的库仑静电力和热运动双重作用,库仑力试图使离子整齐的排列在电极表面附近,而热运动则力图使其均匀的分布在溶液中,这两种作用互相抗衡的结果是:部分电荷在靠近电极表面处形成紧密层,另一部分电荷分布在离电极表面稍远处形成扩散层。Stern 模型较好的反映了界面双电层的真实结构,可以较满意地解释电容微分曲线上在零电荷电势附近出现的电容极小值和两侧出现“平台”的实验事实。Stern模型能比较好地反映界面结构的真实情况。但是,该模型在推导GCS方程式时作了一些假设:(1)把离子电荷看成点电荷并假定电荷是连续分布的;(2)假设介质的介电常数不随电场强度变化;(3)只简单地把紧密层描述成厚度不变的离子电荷层,忽略了紧密层组成的细节及由此引起的紧密层结构与性质上的特点。因此,GCS双电层方程式对界面结构的描述只能是一种近似的、统计平均的结果,而不能用作准确的计算。理论微分电容曲线1-0.1mM2-1mM3-10mM4-100mM可以较满意地解释电容微分曲线上在零电荷电势附近出现的电容极小值和两侧出现“平台”的实验事实。4.Bockris,Devanathan,and Muller(BDM)模型对stern 模型进行了补充和修正,主要考虑两个方面:一个是溶剂化(水化)作用,一个是离子的吸附。MS+OHHq 0MS-OHHq 0MS+q =0电极溶液界面上的水分子偶极层溶液中的离子除了因静电作用而富集在电极/溶液界面外,还可能由于与电极表面的短程相互作用而发生物理吸附或化学吸附。这种吸附与电极材料、离子本性及其水化程度有关,被称为特性吸附。大多数无机阳离子不发生特性吸附,只有极少数水化能较小的阳离子,如Tl+,Cs+等离子能发生特性吸附。反之,除了 F-离子外,几乎所有的无机阴离子都或多或少地发生特性吸附。有无特性吸附紧密层的结构是有差别的。当电极表面带负电时,双电层溶液一侧的剩余电荷由阳离子组成。紧密层将由水偶极层与水化阳离子 层串联组成,称为外紧密层。这些最近的溶剂化离子中心的位置称为外亥姆荷茨平面(OHP),它的厚度为从电极表面处到水化阳离子电荷中心的距离。若设x1 为第一层水分子层的厚度、x2为 一个水化阳离子的半径,则 d x1+x2.没有离子特性吸附时的紧密层结构如果阴离子水化程度较低,阴离子就有可能够溢出水化膜,如果这个阴离子能进行特性吸附的话,那它就会取代水偶极层中的水分子而直接吸附在电极表面上,这些吸附离子与水偶极子等组成内紧密层。阴离子电荷中心所在的液层称为内亥姆荷茨(IHP)平面。由于阴离子直接与金属表面接触,故内紧密层的厚度仅为一个离子半径比外紧密层厚度小很多。有离子特性吸附时的紧密层结构BDM模型祝全体女生节日快乐!祝全体女生节日快乐!1.3 非法拉第过程及电极非法拉第过程及电极/溶液界面的性能溶液界面的性能1.3.1 界面电荷层界面电荷层1.3.2 双电层的结构双电层的结构1.3.3 研究电极溶液界面性质的意义研究电极溶液界面性质的意义1.3.4 零电荷电势零电荷电势 双电层理论总结:双电层理论总结:第一,由于界面两侧存在剩余电荷所引起的第一,由于界面两侧存在剩余电荷所引起的界面双电层包括紧密层与分散层两个部分。界面双电层包括紧密层与分散层两个部分。第二,分散层是由离子热运动所引起,其结第二,分散层是由离子热运动所引起,其结构只与温度、电解质浓度(包括价型)及分散层构只与温度、电解质浓度(包括价型)及分散层中剩余电荷密度有关,而与离子的个别特性无关中剩余电荷密度有关,而与离子的个别特性无关。第第三三,紧紧密密层层的的性性质质决决定定于于界界面面层层的的结结构构,特特别别是是两两相相中中剩剩余余电电荷荷相相互互接接近近的的程程度度。无无机机阳阳离离子子水水化化程程度度高高,一一般般不不能能冲冲破破水水化化层层而而直直接接吸吸附附在在电电极极表表面面上上,因因此此,紧紧密密层层较较厚厚,这这个个厚厚度度所所形形成成的的平平面面称称为为OHP(外外亥亥姆姆霍霍兹兹平平面面、外外紧紧密密层层)。但但阴阴离离子子一一般般水水化化程程度度低低,往往往往能能失失去去水水分分子子而而直直接接吸吸附附在在电电极极表表面面上上,组组成成较较薄薄的的紧紧密密层层,厚厚度度为为离离子子半半径径,称称特特性性吸吸附附,这这个个厚厚度度形形成成的的平平面面称称为为IHP(内亥姆霍兹平面、内紧密层)。(内亥姆霍兹平面、内紧密层)。第第四四,能能在在电电极极上上产产生生特特性性吸吸附附的的阴阴离离子子,往往往往在在电电极极表表面面上上超超载载吸吸附附,此此时时,界界面面层层结结构构及及其其中中电电势势分分布布呈呈三电层形式。三电层形式。1.3.3 研究电极溶液界面性质的意义研究电极溶液界面性质的意义 各各类类电电极极反反应应都都发发生生在在电电极极溶溶液液的的界界面面上上,界面的结构和性质对电极反应有很大影响。界面的结构和性质对电极反应有很大影响。2界面电场对电极反应速度的影响界面电场对电极反应速度的影响 双双电电层层电电势势差差(即即电电极极电电势势)为为1 V,界界面面两两个个电荷层的间距为电荷层的间距为10-8cm时,其场强可达时,其场强可达l08 Vcm1.电解液性质和电极材料及其表面状态的影响电解液性质和电极材料及其表面状态的影响 析析氢氢反反应应2H+2e-H2在在Pt电电极极上上进进行行的的速速度比在度比在Hg电极上进行的速度大电极上进行的速度大107倍以上倍以上思考:思考:如如何何用用电电阻阻与与电电容容来来表表示示理理想想极极化化电电极极和和不不极极化化电电极极的的等效电路?等效电路?理理想想极极化化电电极极:当当通通过过无无限限小小的的电电流流时时,便便引引起起电电极极电位发生很大变化。电位发生很大变化。理理想想不不极极化化电电极极:外外电电流流通通过过电电极极时时所所引引起起的的电电极极极极化化十十分分微微小小,当当外外电电流流消消除除时时电电极极很很快快恢恢复复到到原原来来的的稳稳定定电电势势。常常用用的的参参比比电电极极如如甘甘汞汞电电极极、氯氯化化银银电电极极等等。理理想想极极化化电电极极:在在一一定定的的电电势势范范围围内内,可可以以借借助助外外电电源源任任意意改改变变双双电电层层的的带带电电状状况况(因因而而改改变变界界面面区区的的电电势势差差),而而不不致致引引起起任任何何电电化化学学反反应应的的电电极极。如如KCl溶液中的汞电极。溶液中的汞电极。理理想想不不极极化化电电极极:指指有有电电流流通通过过时时,电电极极与与溶溶液液界面间电势差不发生任何变化的电极。界面间电势差不发生任何变化的电极。1.3.3.1 电极溶液界面性质的研究方法 界面结构在这一过渡区域中剩余电荷和电势的分布以及它们与电极电势的关系。界面性质界面层的物理化学特性,特别是电性质。反应界面性质的参数:界面张力、微分电容Cd、电极表面剩余电荷密度q用实验方法测定界面参数,把这些实验测定结果与根据理论模型推算出来的数值相比较,如果理论值与实验结果比较一致,那么该结构模型就有一定的正确性。研究方法:电毛细曲线法双电层微分电容法1.3.3.2 电毛细现象1.电毛细曲线及其测定对电极体系,界面张力()不仅与压力、温度和界面层的物质组成有关,而且与电极电势()有关。这种界面张力随电极电势变化的现象叫做电毛细现象。界面张力与电极电势的关系曲线叫做电毛细曲线。通常用毛细管静电计测取液态金属电极的电毛细曲线.(h)显微镜测高仪 p 附加压力g 界面张力r 弯液面曲率半径rc 毛细管半径q 接触角h 汞柱高度/V(相相对对于于标标准准氢电氢电极极)汞电极上的电毛细曲线和表面剩余电荷密度电势曲线 汞溶液界面存在着双电层,即界面的同一侧带有相同符号的剩余电荷。无论是带正电荷还是带负电荷,由于同性电荷之间的排斥作用,都力图使界面扩大,而界面张力力图使界面缩小,二者作用恰好相反。因此,带电界面的界面张力比不带电时要小,并且表面电荷密度越大,界面张力就越小。最高点处是电极表面剩余电荷密度为零时,其它点处表面带过剩电荷。呈抛物线状,why?+电毛细曲线的微分方程电毛细曲线的微分方程Lippman公式公式2.2.电毛细曲线的微分方程电毛细曲线的微分方程 表面电荷密度q=0时的电极电势,也就是与界面张力最大值相对应的电极电势称为零电荷电势,常用符号0表示。根据Lippman公式,可以直接通过电毛细曲线的斜率求出 某一电极电势下的电极表面剩余电荷密度q,做图就得到 q-曲线(II)。零电荷电势01.3.4 零电荷电势定义:零电荷电势电极表面剩余电荷为零时的电极电势。由于电极表面不存在剩余电荷时,电极溶液界面就不存在离子双电层,所以也可将零电荷电势定义为电极溶液界面不存在离子双电层时的电势。与 不同的原因:剩余电荷的存在是形成相间电势的重要原因,但不是的唯一原因。任何一相表面层中带电粒子或偶极子的非均匀分布也会引起相间电势。零电荷电势仅仅表示电极表面剩余电荷为零时的电极电势,而不表示电极溶液的相间电势或绝对电势的零点。(1)当电极表面存在正的剩余电荷时,根据Lippman公式,可以判断表面剩余电荷密度的符号随电极电势变正,界面张力不断减小带正电。(2)当电极表面存在负的剩余电荷时,随电极电势变负,界面张力也不断减小带负电不论电极表面存在正剩余电荷还是负剩余电荷,界面张力都将随剩余电荷数量的增加而降低。带正电带负电本节作业:本节作业:1.试描述双电层理论的概要。试描述双电层理论的概要。2.请写出请写出Lippman方程,并根据该方程阐述电极带不同电荷方程,并根据该方程阐述电极带不同电荷时,表面张力随电势的变化趋势。时,表面张力随电势的变化趋势。3.名词解释名词解释 法拉第过程法拉第过程 理想极化电极理想极化电极 零电荷电势零电荷电势 4.简单图示简单图示 OHP、IHP。