变量间的相关关系 (2).ppt
知识探究(一):知识探究(一):变量之间的相关关系变量之间的相关关系思考思考1 1:考察下列问题中两个变量之间的考察下列问题中两个变量之间的关系:关系:(1 1)商品销售收入与广告支出经费;)商品销售收入与广告支出经费;(2 2)粮食产量与施肥量;)粮食产量与施肥量;(3 3)人体内的脂肪含量与年龄)人体内的脂肪含量与年龄.这些问题中两个变量之间的关系是函这些问题中两个变量之间的关系是函数关系吗?数关系吗?(1 1)函数关系:)函数关系:当自变量取值一定时,因变量取值由它唯一确定当自变量取值一定时,因变量取值由它唯一确定 正方形面积正方形面积S S与其边长与其边长x x之间的函数关系之间的函数关系S=xS=x2 2 ,一块农田的水稻产量与施肥量之间的关系一块农田的水稻产量与施肥量之间的关系 。1.两变量之间的关系两变量之间的关系(2)相关关系)相关关系:当自变量取值一定时,因变量的取值带有一定当自变量取值一定时,因变量的取值带有一定的随机性的随机性对自变量边长的每一个确定值,都有唯一确定的面对自变量边长的每一个确定值,都有唯一确定的面积的值与之对应。积的值与之对应。确定关系确定关系水稻产量并不是由施肥量唯一确定,在取值上带有水稻产量并不是由施肥量唯一确定,在取值上带有随机性随机性不确定关系不确定关系讲授新课讲授新课一:变量之间的相关关系一:变量之间的相关关系2、相关关系的概念、相关关系的概念 自变量取值一定时,因变量的取值带有一定的随机性自变量取值一定时,因变量的取值带有一定的随机性的两个变量之间的关系的两个变量之间的关系叫相关关系叫相关关系.(1 1)相关关系与函数关系的异同点:)相关关系与函数关系的异同点:相同点:相同点:均是指两个变量的关系均是指两个变量的关系 不同点:不同点:函数关系是一种函数关系是一种确定确定的关系;的关系;而相关关系是一种而相关关系是一种非确定非确定关系;关系;(2)函数关系与相关关系之间有着密切联系:)函数关系与相关关系之间有着密切联系:在一定的条件下可以相互转化在一定的条件下可以相互转化.而对于具有线性相关关系而对于具有线性相关关系的两个变量来说,当求得其回归直线方程后,又可以用一的两个变量来说,当求得其回归直线方程后,又可以用一种确定性的关系对这两个变量间的取值进行估计:种确定性的关系对这两个变量间的取值进行估计:知识探究(二):散点图知识探究(二):散点图 【问题问题】在一次对人体脂肪含量和年龄在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样关系的研究中,研究人员获得了一组样本数据:本数据:年年龄龄2323272739394141454549495050脂脂肪肪9.59.5 17.17.8 821.21.2 225.25.9 927.27.5 526.26.3 328.28.2 2年年龄龄5353545456565757585860606161脂脂肪肪29.29.6 630.30.2 231.31.4 430.30.8 833.33.5 535.35.2 234.34.6 6思考思考1 1:对某一个人来说,他的体内脂对某一个人来说,他的体内脂肪含量不一定随年龄增长而增加或减少,肪含量不一定随年龄增长而增加或减少,但是如果把很多个体放在一起,就可能但是如果把很多个体放在一起,就可能表现出一定的规律性表现出一定的规律性.观察上表中的数观察上表中的数据,大体上看,随着年龄的增加,人体据,大体上看,随着年龄的增加,人体脂肪含量怎样变化?脂肪含量怎样变化?年龄年龄 2323272739394141454549495050脂肪脂肪 9.59.517.817.8 21.221.2 25.925.9 27.527.5 26.326.3 28.228.2年年龄龄5353545456565757585860606161脂脂肪肪29.29.6 630.30.2 231.31.4 430.30.8 833.33.5 535.35.2 234.34.6 6思考思考2 2:为了确定年龄和人体脂肪含量之间的为了确定年龄和人体脂肪含量之间的更明确的关系,我们需要对数据进行分析,更明确的关系,我们需要对数据进行分析,通过作图可以对两个变量之间的关系有一个通过作图可以对两个变量之间的关系有一个直观的印象直观的印象.以横轴表示年龄,纵轴表示脂肪以横轴表示年龄,纵轴表示脂肪含量,含量,你能在直角坐标系中描出样本数据对你能在直角坐标系中描出样本数据对应的图形吗?应的图形吗?年龄年龄 2323272739394141454549495050脂肪脂肪 9.59.517.817.8 21.221.2 25.925.9 27.527.5 26.326.3 28.228.2年年龄龄5353545456565757585860606161脂脂肪肪29.29.6 630.30.2 231.31.4 430.30.8 833.33.5 535.35.2 234.34.6 6思考思考3 3:上图叫做上图叫做散点图散点图,你能描述一,你能描述一下散点图的含义吗?下散点图的含义吗?在平面直角坐标系中,表示具有相关关系在平面直角坐标系中,表示具有相关关系的两个变量的一组数据图形,称为散点图的两个变量的一组数据图形,称为散点图.思考思考4 4:观察散点图的大致趋势,人的观察散点图的大致趋势,人的年龄与人体脂肪含量具有什么相关关系年龄与人体脂肪含量具有什么相关关系?思考思考5 5:在上面的散点图中,这些点散布在在上面的散点图中,这些点散布在从左下角到右上角的区域,对于两个变量的从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为这种相关关系,我们将它称为正相关正相关.思考思考6 6:如果两个变量成负相关,从整如果两个变量成负相关,从整体上看这两个变量的变化趋势如何?其体上看这两个变量的变化趋势如何?其散点图有什么特点?散点图有什么特点?一个变量随另一个变量的变大而变小,一个变量随另一个变量的变大而变小,散点图中的点散布在从左上角到右下角散点图中的点散布在从左上角到右下角的区域的区域.理论迁移理论迁移例例1 1 在下列两个变量的关系中,哪些是在下列两个变量的关系中,哪些是相关关系?相关关系?正方形边长与面积之间的关系;正方形边长与面积之间的关系;作文水平与课外阅读量之间的关系;作文水平与课外阅读量之间的关系;人的身高与年龄之间的关系;人的身高与年龄之间的关系;降雪量与交通事故的发生率之间的关降雪量与交通事故的发生率之间的关系系.1 1对于两个变量之间的关系,有函数关系对于两个变量之间的关系,有函数关系和相关关系两种,其中函数关系是一种确和相关关系两种,其中函数关系是一种确定性关系,相关关系是一种非确定性关系定性关系,相关关系是一种非确定性关系.3.3.一般情况下两个变量之间的相关关系一般情况下两个变量之间的相关关系成正相关或负相关,类似于函数的单调成正相关或负相关,类似于函数的单调性性.2 2散点图能直观反映两个相关变量之散点图能直观反映两个相关变量之间的大致变化趋势,利用计算机作散点间的大致变化趋势,利用计算机作散点图是简单可行的办法图是简单可行的办法.小结小结知识探究(一):回归直线知识探究(一):回归直线 思考思考1 1:一组样本数据的平均数是样本数一组样本数据的平均数是样本数据的中心,那么散点图中样本点的中心据的中心,那么散点图中样本点的中心如何确定?如何确定?思考思考2 2:在各种各样的散点图中,有些散点图在各种各样的散点图中,有些散点图中的点是杂乱分布的,有些散点图中的点的中的点是杂乱分布的,有些散点图中的点的分布有一定的规律性,年龄和人体脂肪含量分布有一定的规律性,年龄和人体脂肪含量的样本数据的散点图中的点的分布有什么特的样本数据的散点图中的点的分布有什么特点?点?这些点大致分布在一条直线附近这些点大致分布在一条直线附近.思考思考3 3:如果散点图中的点的分布,从整如果散点图中的点的分布,从整体上看大致在一条直线附近,则称这两体上看大致在一条直线附近,则称这两个变量之间具有个变量之间具有线性相关关系线性相关关系,这条直,这条直线叫做线叫做回归直线回归直线.对具有线性相关关系的对具有线性相关关系的两个变量,其回归直线一定通过样本点两个变量,其回归直线一定通过样本点的中心吗?的中心吗?知识探究(二):回归方程知识探究(二):回归方程 在直角坐标系中,任何一条直线都有相在直角坐标系中,任何一条直线都有相应的方程,回归直线的方程称为应的方程,回归直线的方程称为回归方回归方程程.对一组具有线性相关关系的样本数对一组具有线性相关关系的样本数据,如果能够求出它的回归方程,那么据,如果能够求出它的回归方程,那么我们就可以比较具体、清楚地了解两个我们就可以比较具体、清楚地了解两个相关变量的内在联系,并根据回归方程相关变量的内在联系,并根据回归方程对总体进行估计对总体进行估计.思考思考1 1:回归直线与散点图中各点的位置回归直线与散点图中各点的位置应具有怎样的关系?应具有怎样的关系?整体上最接近整体上最接近 思考思考2 2:根据有关数学原理分析,当根据有关数学原理分析,当 时,总体偏差时,总体偏差 为最小,这样为最小,这样就得到了回归方程,这种求回归方程的就得到了回归方程,这种求回归方程的方法叫做方法叫做最小二乘法最小二乘法.回归方程回归方程中,中,a a,b b的几何意义分别是什么?的几何意义分别是什么?小结作业小结作业1.1.求样本数据的线性回归方程,可按求样本数据的线性回归方程,可按下列步骤进行:下列步骤进行:第一步,计算平均数第一步,计算平均数 ,第二步,求和第二步,求和 ,第三步,计算第三步,计算 第四步,写出回归方程第四步,写出回归方程 题型二题型二 回归分析回归分析例例2 某某车车间间为为了了规规定定工工时时定定额额,需需要要确确定定加加工工零零件件所所花花费费的的时时间间,为为此此做做了了四四次次试试验验,根根据据试试验验数数据据得得到到如如下下图图所所示示的的散散点点图图,其其中中x表表示示零零件的个数件的个数,y表示加工时间表示加工时间.(1)求出求出y关于关于x的线性的线性 回归方程回归方程 =bx+a;(2)试预测加工试预测加工10个零个零 件需多长时间?件需多长时间?(1)=3.5,=3.5,所以所以b=0.7,a=-b=3.5-0.73.5=1.05,所以线性回归方程为所以线性回归方程为 =0.7x+1.05.