飞行控制系统大作业.pdf
飞行控制系统大作业飞行控制系统课程实验报告班级0314102学号031410224姓名孙旭东成绩南京航空航天大学2017 年 4 月(一)飞机纵向飞行控制系统的设计与仿真1、分析飞机纵向动力学模态,求飞机的长周期与短周期阻尼与自然频率。在 MATLAB 环境下导入数据文件,输入 damp(alon),得出结果:EigenvalueDamping4.88e-0014.88e-0011.00e+0002.13e-0012.13e-001Freq.(rad/s)4.69e+0004.69e+0003.16e-0023.42e-0023.42e-002-2.29e+000+4.10e+000i-2.29e+000-4.10e+000i-3.16e-002-7.30e-003+3.35e-002i-7.30e-003-3.35e-002i长周期的根为-7.30e-003+3.35e-002i 和-7.30e-003-3.35e-002i阻尼为 2.13e-001自然频率为 3.42e-002(rad/s)短周期的根为-2.29e+000+4.10e+000i 和-2.29e+000-4.10e+000i阻尼为 4.88e-001自然频率为 4.69e+000(rad/s)2、对升降舵及油门单位阶跃输入下的飞机自然特性进行仿真,画出相应的状态曲线。sys=ss(alon,blon,clon,dlon)sys=ss(alon,blon,clon,dlon)y,t=step(sys,500)y,t=step(sys,500)subplot(221)subplot(221)plot(t,y(:,1,1)plot(t,y(:,1,1)xlabel(xlabel(t(s)t(s)ylabel(ylabel(Deltau(m/s)Deltau(m/s)subplot(222)subplot(222)plot(t,y(:,1,2)plot(t,y(:,1,2)xlabel(xlabel(t(s)t(s)ylabel(ylabel(Deltau(m/s)Deltau(m/s)subplot(223)subplot(223)plot(t,y(:,2,1)plot(t,y(:,2,1)xlabel(xlabel(t(s)t(s)ylabel(ylabel(Deltaalpha(deg)Deltaalpha(deg)subplot(224)subplot(224)plot(t,y(:,2,2)plot(t,y(:,2,2)xlabel(xlabel(t(s)t(s)ylabel(ylabel(Deltaalpha(deg)Deltaalpha(deg)4000)g-2200)se/md(u0-4-2000200400400600-60200t(s)4400600t(s)g2200)se/md(u00-2000200400600-20200t(s)400600t(s)subplot(221)subplot(221)plot(t,y(:,3,1)plot(t,y(:,3,1)xlabel(xlabel(t(s)t(s)ylabel(ylabel(Deltaq(deg/s)Deltaq(deg/s)subplot(222)subplot(222)plot(t,y(:,3,2)plot(t,y(:,3,2)xlabel(xlabel(t(s)t(s)ylabel(ylabel(Deltaq(deg/s)Deltaq(deg/s)subplot(223)subplot(223)plot(t,y(:,4,1)plot(t,y(:,4,1)xlabel(xlabel(t(s)t(s)ylabel(ylabel(Deltatheta(deg)Deltatheta(deg)subplot(224)subplot(224)plot(t,y(:,4,2)plot(t,y(:,4,2)xlabel(xlabel(t(s)t(s)ylabel(ylabel(Deltatheta(deg)Deltatheta(deg)542)s/ge 0d(q-2)s/ged(q0-5-10020050400600-40200t(s)100400600t(s)ged(0-50-100-1500200400600t(s)ged(500-500200t(s)400600subplot(121)plot(t,y(:,5,1)xlabel(t(s)ylabel(Deltah(m)subplot(122)plot(t,y(:,5,2)xlabel(t(s)ylabel(Deltah(m)2.5x 104x 10402-0.51.5-1)m(h10.50)m(h-1.5-2-0.50200t(s)4006000200-2.5400600t(s)以上各图为升降舵及油门单位阶跃输入下的飞机自然特性行仿真,左边一列为升降舵的阶跃输入,右边一列为油门的阶跃输入。3、采用短周期简化方法,求出传递函数Gq(s)。采用根轨迹方法设计飞机的俯e仰角控制系统,并进行仿真。输入命令:a1=alon(2:3),(2:3)b1=blon(2:3),:)c1=clon(2:3),(2:3)d1=dlon(2:3),:)n,d=ss2tf(a1,b1,c1,d1,1)g1=tf(n(2,:),d)得到传递函数Gq(s)为:e-34.17 s-82.55-s2+4.579 s+22.01根轨迹设计:输入命令:g1=tf(n(2,:),d)g2=tf(-10,1 10)g3=series(g1,g2)sisotool(g3)25RootLocusEditor forOpenLoop1(OL1)200)Bd(edutnigaM-2015BodeEdit orforOpenLoop1(OL1)Open-Loop10-40-60 G.M.:InfFreq:InfStableloop-804505sxiA0gamI-5-10-15-20-25-10-135P.M.:107degFreq:5.6rad/sec-180-8-6-4-2010-1100101102103Real AxisFrequency(rad/sec)ged(esahP-45-90选取阻尼比为 0.55 时,根轨迹增益为 Kq=0.17325RootLocusEditor forOpenLoop1(OL1)20Open-Loop BodeEdit orforOpenLoop1(OL1)200)Bd-20(eduting-40aM-60G.M.:InfFreq:InfStableloop-804515105sxiA0gamI-5g)ed(esahP0-10-45-15-20-90-25-10-135P.M.:95.4degFreq:6.29rad/sec-180-8-6-4-2010-1100101102103Real AxisFrequency(rad/sec)g4=feedback(g3,0.173)g5=tf(1,1 0)g6=series(g4,g5)sisotool(g6)25RootLocus EditorforOpenLoop1(OL1)4020)Bd(eduitngaM0-20-40-602015Open-LoopBodeEditor forOpenLoop1(OL1)105sxiA0gamI-5-10-80G.M.:10.2 dB-100Freq:10 rad/secStableloop-120-45-90-15-20-25-35)ge-135d(esa-180hP-225P.M.:82.9 deg-30-25-20-15-10Real Axis-270-5051010-1100101102103Frequency(rad/sec)Freq:3.18 rad/sec同样,可得 Kth=1在 Simulink 中搭建系统仿真模型:tClockTo WorkspaceStep1GainTransferFcns+10-10num(s)TransferFcn1den(s)Integrator1sx1To Workspace1Gain2-K-Scope进行仿真:10.8)ged(0.60.40.20012345t(s)6789104、基于长周期简化方法,求出传递函数Gu(s),设计飞机的速度控制系统,并T进行仿真。输入命令:a1=alon(1,4,1,4)a1=alon(1,4,1,4)b1=blon(1,4,:)b1=blon(1,4,:)c1=clon(1,4,1,4)c1=clon(1,4,1,4)d1=dlon(1,4,:)d1=dlon(1,4,:)n,d=ss2tf(a1,b1,c1,d1,2)n,d=ss2tf(a1,b1,c1,d1,2)g1=tf(n(1,:),d)g1=tf(n(1,:),d)得到传递函数为:7.971 s-s2+0.04847 s在 Simulink 中搭建系统模型:ClocktTo Workspacex1To Workspace1PIDStepPID Controller10s+10TransferFcn7.971ss2+0.04847sTransferFcn1Scope使用经验试凑法得到 PID 控制器参数:Kp=0.9 Ki=0.2 Kd=0仿真结果如下:1.41.210.8u0.60.40.20012345t(s)6789105、基于纵向线性模型(状态方程),分别对速度控制与俯仰角控制进行仿真。在 Simulink 中搭建仿真模型:tClockToWorkspacexx2ToWorkspace7x1ToWorkspace2PID10 x2s+10 xStepPID Controllery=Ax+BuCx+DuWorkspace3TransferFcnToState-Spacex3ToWorkspace4x41-10 xx1ToWorkspace5Gains+10TransferFcn1ToWorkspace6x5Gain1-K-ToWorkspace1先在速度通道加阶跃信号,输入命令:subplot(221)subplot(221)plot(t,x1)plot(t,x1)xlabel(xlabel(t(s)t(s)ylabel(ylabel(Deltau(m/s)Deltau(m/s)subplot(222)subplot(222)plot(t,x2)plot(t,x2)xlabel(xlabel(t(s)t(s)ylabel(ylabel(Deltaalpha(deg)Deltaalpha(deg)subplot(223)subplot(223)plot(t,x3)plot(t,x3)xlabel(xlabel(t(s)t(s)ylabel(ylabel(Deltaq(deg/s)Deltaq(deg/s)subplot(224)subplot(224)plot(t,x4)plot(t,x4)xlabel(xlabel(t(s)t(s)ylabel(ylabel(Deltatheta(deg)Deltatheta(deg)和plot(t,x5)xlabel(t(s)ylabel(Deltah(m)得到以下曲线:1.50.4)ged(0.2)s/m(u100.5005t(s)-0.2-0.405t(s)10104)s/ged(q20-2-405t(s)g0.60.40.20ed(10-0.205t(s)100-0.5)m(h-1-1.50246810t(s)再在俯仰角通道加阶跃信号,重复以上命令,得到如下曲线:0-0.00510.5)ged(0)s/m(u-0.01-0.015-0.5051005t(s)t(s)10321.5)g1ed(0.501005t(s)s/ged(q10-105t(s)100)m-10(h-20-30100246810t(s)(二)飞机侧向滚转角控制系统设计1、求出侧向运动方程的特征根,及对应的模态,求出荷兰滚模态的阻尼及自然频率。在 MATLAB 环境下导入数据文件,输入 damp(alon),得出结果:EigenvalueDamping-1.00e+0001.00e+0001.00e+0001.97e-0011.97e-001Freq.(rad/s)0.00e+0006.89e+0001.55e-0025.19e+0005.19e+0000.00e+000-6.89e+000-1.55e-002-1.02e+000+5.08e+000i-1.02e+000-5.08e+000i侧向运动方程的特征根为:0.00e+000(航向随遇平衡模态)-1.55e-002(螺旋模态)-1.02e-001+5.08e+000i,-1.02e-001 5.08e+000i(荷兰滚模态)-6.89e+000(侧向滚转收敛模态)荷兰滚模态的阻尼为:1.97e-001自然频率为:5.19e+000(rad/s)2、对副翼与方向舵单位阶跃输入下的自然特性进行仿真sys=ss(alat,blat,clat,dlat)sys=ss(alat,blat,clat,dlat)y,t=step(sys,400)y,t=step(sys,400)subplot(221)subplot(221)plot(t,y(:,1,1)plot(t,y(:,1,1)xlabel(xlabel(t(s)t(s)ylabel(ylabel(Deltabeta(deg)Deltabeta(deg)subplot(222)subplot(222)plot(t,y(:,1,2)plot(t,y(:,1,2)xlabel(xlabel(t(s)t(s)ylabel(ylabel(Deltabeta(deg)Deltabeta(deg)subplot(223)subplot(223)plot(t,y(:,2,1)plot(t,y(:,2,1)xlabel(xlabel(t(s)t(s)ylabel(ylabel(Deltap(deg/s)Deltap(deg/s)subplot(224)subplot(224)plot(t,y(:,2,2)plot(t,y(:,2,2)xlabel(xlabel(t(s)t(s)ylabel(ylabel(Deltap(deg/s)Deltap(deg/s)得到以下曲线:11.5)ge-1d(0)ge0.5d(1-2-30-0.50100200300400t(s)0)s-10)gedgsepd-20p-300100200t(s)300400subplot(221)plot(t,y(:,3,1)xlabel(t(s)ylabel(Deltar(deg/s)subplot(222)plot(t,y(:,3,2)xlabel(t(s)ylabel(Deltar(deg/s)subplot(223)plot(t,y(:,4,1)xlabel(t(s)ylabel(Deltaphi(deg)subplot(224)plot(t,y(:,4,2)xlabel(t(s)ylabel(Deltaphi(deg)得到以下曲线:0100200300400t(s)0-5-10-150100200300400t(s)0-2020)s0/ged(r-20)s/ge-40d(r-60-800100200t(s)300400-400100200t(s)0-2003004000)ged(-500-1000-15000)ged-400(-600-8000100200t(s)100200t(s)300400300400subplot(121)plot(t,y(:,5,1)xlabel(t(s)ylabel(Deltapsi(deg)subplot(122)plot(t,y(:,5,2)xlabel(t(s)ylabel(Deltapsi(deg)得到以下曲线:0 x 1040-0.5-2000-4000-6000)g ed(-1-1.5)g ed(-8000-2-10000-120000100200t(s)300400-14000-2.50200t(s)400以上各图中左边为副翼输入单位阶跃响应的曲线,右边为方向舵输入单位阶跃响应的曲线。3、采用简化方法,求出传递函数Gp(s)。采用根轨迹方法设计飞机的滚转角控a制系统,并进行仿真。输入命令:a1=alat(2,4,2,4)b1=blat(2,4,:)c1=clat(2,4,2,4)d1=dlat(2,4,:)n,d=ss2tf(a1,b1,c1,d1,1)g1=tf(n(1,:),d)得到所求传递函数Gp(s):a-135.1 s+3.894e-020-s2+7.196 s-2.073e-021根轨迹设计:输入命令:g2=tf(-10,1 10)g3=series(g1,g2)sisotool(g3)RootLocusEditorforOpenLoop1(OL1)1020Open-Loop BodeEditor forOpenLoop1(OL1)8)Bd(eduitngaM604-202sxiAgamI0-40-60 G.M.:InfFreq:InfUnstableloop-800-45-2-4-6g)ed(esahP-90-135P.M.:166degFreq:0.998rad/sec-8-10-15-10-5Real Axis-1800510-1100101102103Frequency(rad/sec)选取阻尼比为 0.7 左右时,得到 Kp=0.054再输入:g4=feedback(g3,0.054)g5=tf(1,1 0)g6=series(g4,g5)sisotool(g6)25RootLocus EditorforOpenLoop1(OL1)200Open-LoopBodeEditor forOpenLoop1(OL1)20-20-401510-60-80G.M.:18.8 dB-100Freq:12 rad/secUnstableloop-120-9050-5-10-135-15-180-20-225P.M.:76.5 degFreq:1.96 rad/sec-25-30-20-10Real Axis0-2701010-11010 1010Frequency(rad/sec)0123得到 Kth=0.211在 Simulink 中搭建系统模型:tClockTo WorkspaceStep1GainTransferFcns+10-10num(s)TransferFcn1den(s)Integrator1sx1To Workspace1Gain2-K-Scope输入:plot(t,x1)xlabel(t(s)ylabel(Deltaphi)得到响应曲线:10.90.80.70.60.50.40.30.20.10012345t(s)6789104、设计飞机航向控制系统,并进行仿真。在 Simulink 中搭建系统仿真模型:ClocktSignalConstraintToWorkspaces+10-10kpsStep-K-num(s)GainGain1TransferFcn-K-den(s)TransferFcn11s9.8Integrator150sx1TransferFcn2ToWorkspace1Gain2Scope利用寻优模块取得:Kps=9.87响应为:1.210.8)g0.6ed(0.40.20-0.2012345t(s)6789105、设计飞机方向舵协调控制律,基于侧向线性模型(状态方程)进行航向控制系统的仿真。10。s10使用根轨迹的方法设计 Kr:a1=alat(1,3,1,3)b1=blat(1,3,:)c1=clat(1,3,1,3)d1=dlat(1,3,:)n,d=ss2tf(a1,b1,c1,d1,2)g1=tf(n(2,:),d)g2=tf(-10,1 10)g3=series(g1,g2)sisotool(g3)假设作动器特性为40R ootLocusEditorforOpenLoop1(OL1)Open-Loop BodeE20ditorforOpenLoop1(OL1)30201000-20-40-60-8090450-45G.M.:I nfFreq:InfStableloop-10-20-30-135-8-90-40-10-6-4R ealAxis-180-2-2010P.M.:67.3degFreq:8.27rad/sec100Frequency(rad/sec)102104确定 Kr=0.21在 Simulink 中搭建如下系统模型:tClockTo WorkspaceGain3-K-Gain4-K-x13.1StepGain2To Workspace2-10s+10TransferFcnx=Ax+Buy=Cx+DuState-Spacex2To Workspace3x3-1Gain-10s+10TransferFcn1Gain1-K-To Workspace4x4To Workspace5x5To Workspace1经试验,Kpsi 取 3.1,Kbeta 取-1 时的响应效果较好。以下为仿真结果:0.15)ge0.05d(0.1)s/ged(p020100-0.0505t(s)10-1005t(s)ged(100.88)s/ge0.4d(r0.2005t(s)10.6642005t(s)106810100.8)g0.6ed(0.40.20024t(s)