医疗行业大数据应用实例23933.pptx
大数据 医疗领域应用 演讲人:崔浩博时间:2014.10.13ppt制作:崔浩博outline一、医疗与大数据的趋势二、医疗大数据的应用场景三、案例分析一、医疗与大数据的趋势二、医疗大数据的应用场景三、案例分析医医疗费疗费用在不断上升用在不断上升GDP的占比非常高10-19%0-9%趋势分析:我们正处在医疗行业的一个重要转折点%of population over age 6030+%25-29%20-24%2050WW Average Age 60+:21%Source:United Nations “Population Aging 2002”全球老全球老龄龄化化平均年龄60+的人:目前的10%,到2050年将到达20%以美国以美国为为例例:医医疗疗大数据的价大数据的价值值3千亿美元/年,相当于每年生成总值增长0.7%到2020年,医疗数据将会急剧增长到35 ZB,相当于2009年数据量的44倍增长。0150001000050002010 2011 2012 2013 2014 2015趋势分析:我们正处在医疗行业的一个重要转折点存储的增长医疗服务产生的数据总量(PB)AdminImagingEMREmailFileNon Clin ImgResearch一个CT图像含有大约150MB的数据,而一个基因组序列文件大小约750MB,一个标准的病理图则大得多,接近5GB。如果将这些数据量乘以人口数量和平均寿命,仅一个社区医院或一个中等规模制药企业就可以生成和累积达数个TB甚至数个PB级的结构化和非结构化数据。一、医疗与大数据的趋势二、医疗大数据的应用场景三、案例分析7医疗大数据应用场景医疗大数据应用场景l医疗行业产生的数据量主要来自于PACS影像、B超、病理分析等业务所产生的非结构化数据。人体不同部位、不同专科影像的数据文件大小不一,PACS网络存储和传输要采取不同策略。面对大数据,医疗行业遇到前所未有的挑战和机遇。l医疗行业大数据应用场景非常多,右图仅以临床操作和研发为例,展示医疗行业大数据应用场景。l对于公共卫生部门,可以通过过覆盖全国的患者电子病历数据库,快速检测传染病,进行全面的疫情监测,并通过集成疾病监测和响应程序,快速进行响应。比较效果研究比较效果研究临床操作临床操作临床决策支持系统临床决策支持系统医疗数据透明度医疗数据透明度远程病人监控远程病人监控研发研发预测建模预测建模提高临床试验设计的统计工具和提高临床试验设计的统计工具和算法算法疾病模式的分析疾病模式的分析一、医疗与大数据的趋势三、案例分析二、医疗大数据的应用场景n临床医生的知床医生的知识更新无法与急更新无法与急剧增增长的医学知的医学知识同步。同步。n对大批量的常大批量的常规决策工作,自决策工作,自动化决策效率更高化决策效率更高(如大量的常如大量的常规实验室室检测和数据分析等和数据分析等)。n人有人有时会犯会犯错误或失或失误,当然医生也不例外,当然医生也不例外(复复杂病例和常病例和常见病病例都会出例都会出错),),使用使用临床决策支持系床决策支持系统,可以提醒,可以提醒专家没在意的家没在意的或没有或没有发现到的病人信息,从而提高到的病人信息,从而提高诊断准确性断准确性 n对医学院学生,成熟医学院学生,成熟专业的的临床支持床支持系系统可能是他可能是他们学学习专业知知识和和专家家经验的方便可得的廉价的老的方便可得的廉价的老师,同,同时也是他也是他们初入初入医院医院实习工作的非常好的助手。工作的非常好的助手。临床决策支持系统的功能和作用临床决策支持系统的功能和作用案例分析临床决策支持系统基于知基于知识库的的CDSS非基于知非基于知识库的的CDSS基于知基于知识库的识库的CDSS 大部分CDSS属于此类,它由三大模块组成:知识库、推理机和通讯模块。知识库存储着编译好的医学知识,推理机则根据知识库里的规则,以及患者的资料进行自动分析。分析的结果通过通讯模块反馈给用户。例如:MYCIN非非基于基于知识库知识库的的CDSS 主要是通过机器学习从已有的经验中自动攫取规则。MYCIN系统 MYCIN系统是由斯坦福系统是由斯坦福(Stanford)大学建立的对细菌感染疾病的诊断和大学建立的对细菌感染疾病的诊断和治疗提供咨询的计算机咨询专家系统。医生向系统输入病人信息,治疗提供咨询的计算机咨询专家系统。医生向系统输入病人信息,MYCIN系统对之进行诊断,并提出处方。系统对之进行诊断,并提出处方。细菌传感疾病专家在对病情诊断和提出处方时,大致遵循下列细菌传感疾病专家在对病情诊断和提出处方时,大致遵循下列4个步骤个步骤:(1)(1)确定确定病人是否有重要的病菌感染需要治疗。为此,首先要判病人是否有重要的病菌感染需要治疗。为此,首先要判断所发现的细菌是否引起了疾病断所发现的细菌是否引起了疾病。(2)确定疾病可能是由哪种病菌引起的确定疾病可能是由哪种病菌引起的。(3)判断哪些药物对抑制这种病菌可能有效判断哪些药物对抑制这种病菌可能有效。(4)根据病人的情况,选择最适合的药物。根据病人的情况,选择最适合的药物。咨询开始时,先启动咨询系统,进入人机对话状态。在对话过程中,系统向用户提出必要的问题,进行推理。当结束咨询时,系统自动地转入解释子系统。解释子系统回答用户的问题,并解释推理过程。解释时,系统显示说明为什么需要某种信息,以及如何得到某个结论。这样做的主要目的是为了使医生容易接受系统的结论。动态数据库中的数据表示数据库中的数据都用如下形式的三元组描述:(对象 属性 值)1.“对象”又称为上下文,它是系统要处理的实体,例如:PERSON(病人)2.“属性”又称临床参数,用于描述相应对象的特征,例如“病人”的姓名、年龄、性别。3.“值”是指相应属性的值,根据属性的不同类别,其值可以是一个或多个。对象对象属性属性值值病人-1性别(男 1.0)病人-1药物过敏(青霉素1.0)(氣苄青霉素1.0)病原体-1鉴别名(链球菌0.6)(葡萄球菌0.4)MYCIN采用上下文树(Context tree)来表示问题,一棵上下文树构成了对一个病人的完整描述。知识库的知识表示领域知识的表示v领域知识用规则表示领域知识用规则表示,其一般形式为:其一般形式为:RULE RULE *IF *IF THEN THEN v例如对如下规则:例如对如下规则:vRULE 047RULE 047v如果:(如果:(1 1)病原体的鉴别名不确定,且)病原体的鉴别名不确定,且v (2 2)病原体来自血液,且)病原体来自血液,且v (3 3)病原体的染色是革兰氏阴性,且)病原体的染色是革兰氏阴性,且v (4 4)病原体的形态是杆状的,且)病原体的形态是杆状的,且v (5 5)病原体呈赭色)病原体呈赭色v那么:该病原体的鉴别名是假单胞细菌,可信度为那么:该病原体的鉴别名是假单胞细菌,可信度为0.40.4。静态知识的表示(静态知识的表示(属性特性的表示属性特性的表示)从临床参数(属性)的角度来看,可认为每个临床参数都具很多种特性。主要特性有:MEMBEROF:按所描述的对象不同迸行分类时,临床参数所属的类型名,例如:PRO-PToVALUTYPE:临床参数是单值、二值还是多值。PROMPT:用于向用户提问一个单值或二值参数的值。LABDATA:用于指出相应参数的值是否可从用户那里获得。对象对象属性属性值值BURNMEMBEROFPRO-PTBURNVALUTYPEBINARYBURNPROMPTIs*a burn patient?BURNLABDATA1推理策略:MYCIN的咨询系统采用逆向推理(目的驱动)过程。在咨询开始时,首先例示上下文树中的根节点。根节点属于PERSON类型的上下文。例示包括以下3步:(1)赋于这个上下文一个名称;(2)把这个上下文加到上下文树上去;(3)马上跟踪这类上下文的MAINPROPS表中的参数。实例示范:系统首先在数据库中建立一棵上下文树的根节点,并为该根节点指 定一个名字PATIENT-1(病人-1),其类型为PERSON。PERSON的属性为(NAME AGE SEX REGIMEN),其中前三项都具LABDATA特性,即可通过向用户询问得到其值。于是系统向用户提出询问。用户输人病人的姓名、年龄及性别,并以三元组形式存入数据中。REGIMEN不是LABDATA属性,必须由系统推出。n为了得到REGIMEN,系统将开始推理过程。推理时首先运用的一条规则是 RULE 092。n规则092IF存在一种病菌需要处理某些病菌虽然没有出现在目前的培养物中,但已经注意到它们需要处理THEN根据病菌对药物的敏感情况,编制一个可能抑制该病菌的处方表从处方表中选择最佳的处方ELSE病人不必治疗n规则092的前提部分涉及到临床参数TREATFOR,它是一个NONLABDATA,因而系统调用TREATFOR的UPDATEI-BY特性所指出的第一条规则090。规则090:IF已知细菌的类别存在和这种细菌的出现有关的显著的病症THEN肯定存在一种需要处理的细菌(可信度1.0)检查它的前提是否为真,此时如果该前提所涉及到的值是可向用户询问的,就直接询问用户,否则再找出可推出该值的规则。如此反复进行,直到最后推出PATIENT-1的主要临床参数 REGIMEN为止。发展障碍 医学知识的复杂性导致了系统设计时需要考虑非常多的因素,如患者的症状、体征、实验室检查数据、家族史、基因、流行病学资料、现有的医学文献等等。而且,每年发表的临床研究数以千计,而且不少研究彼此矛盾,大量的数据导致了系统维护上存在困难。目前成功用于诊断环节的CDSS常常局限于某个领域,比如,1971年上线使用的Leeds腹痛诊断系统,其诊断的正确率高达91.8%,而医生的诊断正确率在79.6%。但这套系统仅能用于腹痛的诊断。临床工作的复杂性也增加了系统整合的难度。目前大多数系统仍独立于临床工作流程,这导致了医生需要独立打开CDSS,然后花费时间录入患者资料,降低了工作效率。目前整合比较成功的案例是药房系统和账单系统。因为药房工作相对简单,CDSS主要解决药物相互作用问题,比较容易设计。CDSS经常产生大量的警告信息,很容易导致医护人员疲劳应付。正向推理(数据驱动)用户通过人机界面输入一批事实,推理机用这些事实,一次雨知识库中的规则前提匹配,若某规则前提全被事实满足,则规则可以被运用。规则的结论作为新的事实存储,然后用更新过的事实再与其他规则的前提匹配,直到不再有可匹配的规则。应用Thanks谢谢观看/欢迎下载BY FAITH I MEAN A VISION OF GOOD ONE CHERISHES AND THE ENTHUSIASM THAT PUSHES ONE TO SEEK ITS FULFILLMENT REGARDLESS OF OBSTACLES.BY FAITH I BY FAITH