学年人教B高中数学选修统计案例回归分析课时.pptx
本节课通过例题线性相关关系知识,通过实际问题中发现已有知识的不足,引导学生寻找解决非线性回归问题思想与方法,培养学生化归数学思想。通过知识的整理,通过例题讲解掌握解决非线性回归问题。本节内容学生内容不易掌握,通过知识整理与比较引导学生进行区分、理解。通过对典型案例的探究,练习进行巩固解决非线性回归基本思想方法及初步应用第1页/共27页建立回归模型的基本步骤建立回归模型的基本步骤(1)确定研究对象,明确哪个变量是解释变量,哪个变量是预报变量(2)画出确定好的解释变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等)(3)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性回归方程)(4)按一定规则(如最小二乘法)估计回归方程中的参数(5)得出结果后分析残差图是否有异常(如个别数据对应残差过大,或残差呈现不随机的规律性等)若存在异常,则检查数据是否有误,或模型是否合适等第2页/共27页(6)(6)参数R R2 2与相关系数r r提示:它们都是刻画两个变量之间的的相关关系的,区别是R R2 2表示解释变量对预报变量变化的贡献率,其表达式为R R2 2=1-;=1-;相关系数r r是检验两个变量相关性的强弱程度,其表达式为 第3页/共27页(7 7)相关系数r r与R R2 2(1)R(1)R2 2是相关系数的平方,其变化范围为0,1,0,1,而相关系数的变化范围为-1,1.-1,1.(2)(2)相关系数可较好地反映变量的相关性及正相关或负相关,而R R2 2反映了回归模型拟合数据的效果.(3)(3)当|r|r|接近于1 1时说明两变量的相关性较强,当|r|r|接近于0 0时说明两变量的相关性较弱,而当R R2 2接近于1 1时,说明线性回归方程的拟合效果较好.第4页/共27页例:一只红铃虫产卵数y和温度x有关,现收集到的一组数据如下表1-3表,试建立y与x之间的回归方程。第5页/共27页画出确定好的解释变量和预报变量的散点图,观察它们之间的关系(1)是否存在线性关系?(2)散点图具有哪种函数特征?(3)以指数函数模型为例,如何设模型函数?非线性关系指数函数、二次函数、三次函数第6页/共27页cc21设指数函数曲线 其中 和 是待定参数。ecyxc12=我们可以通过对数变换把指数关系变为线性关系()这样就可以利用线性回归模型来建立z 与x回归模型,进而找到y与x的非线性回归方程 。*则变换后样本点分布在直线的周围。令)cb,clna(abxz21=+=ylnz=现在问题变为如何估计待定参数 和?cc21非线性回归模型非线性回归模型第7页/共27页(6)ey0.272x-3.843(1)=第8页/共27页另一方面,可以认为图11-411-4中样本点集中在某二次曲线因此可以对温度变量做变换,即令 然后建立y y与t t之间的线性回归方程,从而得到y y与x x之间的排线性回归方程。,2xt=的附近,其中 和 为待定参数.43cc423cxcy+=表1-51-5是红铃虫的产卵数和对应的温度的平方,图1.1-61.1-6是相应的散点图.第9页/共27页第10页/共27页第11页/共27页第12页/共27页()()()(),b,xgya,xfy21=和和对于给定的样本点 ,两个含有未知数的模型其中a和b都是未知参数,可以按如下的步骤来比较它们的拟合效果.ba 其中 和 分别是参数a、b的估计值(1)分别建立对应于两个模型的回归方程()(),b,xgy 2=()()a ,xfy 1=()()();y yQn1i22ii2=-=()Q1()()y yn1i21ii=-=与(2)分别计算两个回归方程的残差平方和()()()()()()()()()().b,xgy a ,xfy ,;b,xgy a ,xfy,QQ212121的好的效果不如反之的好的效果比则(3)若=第13页/共27页非线性回归问题的处理方法(1)两个变量不呈线性关系,不能直接利用线性回归方程建立两个变量的关系,可以通过变换的方法转化为线性回归模型,如y=,我们可以通过对数变换把指数关系变为线性关系.令z=lny,则变换后样本点应该分布在直线z=bx+a(a=lnc1,b=c2)的周围.第14页/共27页(2)非线性回归方程的求法根据原始数据(x,y)作出散点图;根据散点图,选择恰当的拟合函数;作恰当的变换,将其转化成线性函数,求线性回归方程;在的基础上通过相应的变换,即可得非线性回归方程.第15页/共27页(3)非线性相关问题中常见的几种线性变换在实际问题中,常常要根据一批实验数据绘出曲线,当曲线类型不具备线性相关关系时,可以根据散点分布的形状与已知函数的图象进行比较,确定曲线的类型,再作变量替换,将曲线改为直线.下面是几种容易通过变量替换转化为直线的函数模型:第16页/共27页y=a+,y=a+,令令t=t=,则有,则有y=a+bty=a+bt;y=axy=axb b,令,令z=ln yz=ln y,t=ln xt=ln x,m=ln am=ln a,则有,则有z=m+btz=m+bt;y=aey=aebxbx,令,令z=ln yz=ln y,m=ln a,m=ln a,则有则有z=m+btz=m+bt;y=,y=,令令z=ln y,t=z=ln y,t=,m=ln am=ln a,则有,则有z=m+btz=m+bt;y=a+bln xy=a+bln x,令,令t=ln xt=ln x,则有,则有z=a+btz=a+bt;y=bxy=bx2 2+a,+a,令令t=xt=x2 2,则有,则有y=bt+a.y=bt+a.第17页/共27页例例 某种食品每公斤的生产成本y(元)与该食品生产的重量x(公斤)有关,经生产统计得到以下数据:x123510203050100200y10.155.524.082.852.111.621.411.301.211.15通过以上数据判断该食品的成本y(元)与生产的重量x(公斤)的倒数1/x之间是否具有线性相关关系?若有,求出y关于1/x的回归直线方程,并借此估计一下生产该食品500公斤时每公斤的生产成本是多少?(精确到0.01)第18页/共27页第19页/共27页 于是 y 与1x的回归方程为y8.973x1.125.当 x500(公斤)时,y8.9735001.1251.14.即估计生产该食品 500 公斤时每公斤的生产成本是1.14 元 第20页/共27页X x第21页/共27页2.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y关于x的线性回归方程为().A.y=x-1 B.y=x+1C.y=88+12x D.y=176父亲身高x(cm)174176176176178儿子身高y(cm)175175176177177答案:C解析:方法一:由线性回归直线方程过样本中心(176,176),排除A,B答案,结合选项可得C为正确答案.方法二:将表中的五组数值分别代入选项验证,可知y=88+12x最适合.第22页/共27页xx第23页/共27页xx第24页/共27页 非线性回归问题有时并不给出经验公式非线性回归问题有时并不给出经验公式,这时我们可以画这时我们可以画出已知数据的散点图出已知数据的散点图,把它与学过的各种函数把它与学过的各种函数(幂函数、指数幂函数、指数函数、对数函数函数、对数函数)等图象作比较等图象作比较,挑选一种跟这些散点拟合得挑选一种跟这些散点拟合得最好的函数最好的函数,然后采用适当的变量置换然后采用适当的变量置换,把问题化为线性回归把问题化为线性回归分析问题分析问题,使之得到解决使之得到解决.第25页/共27页敬请指导敬请指导.第26页/共27页感谢您的观看。第27页/共27页