【精品课件一】62立方根.ppt
6.2 立立 方方 根根16的平方根是的平方根是_-16的平方根是的平方根是_0的平方根是的平方根是_没有平方根没有平方根0 一个正数有正负两个平方根一个正数有正负两个平方根,它们互为它们互为相反数相反数;零的平方根是零零的平方根是零,负数没有平方根负数没有平方根.你你还还记记得得吗吗 问题:要做一个体积为问题:要做一个体积为27cm27cm3 3的正方体模的正方体模型(如图),它的棱长要取多少?你是怎么知型(如图),它的棱长要取多少?你是怎么知道的?道的?思考:思考:(1)(1)什么数的立方等于什么数的立方等于-8-8?(2)(2)如果问题中正方体的体积为如果问题中正方体的体积为5 5cmcm3 3,正方,正方体的棱长又该是多少?体的棱长又该是多少?设正方体的棱长为设正方体的棱长为X X,则则这就是要求一个数这就是要求一个数,使它的立方等于使它的立方等于27.27.因为因为 所以所以 X=3.X=3.正方体的棱长为正方体的棱长为3 3-2 一般地,一个数的立方等于一般地,一个数的立方等于a a,这个数就,这个数就叫做叫做a a的的立方根立方根,也叫做,也叫做a a的的三次方根三次方根记作记作.1.1.立方根的定义立方根的定义一个数一个数a a的立方根可以表示为的立方根可以表示为:a3根指数根指数被开方数被开方数其中其中a a是被开方数,是被开方数,3 3是根指数,不能省略。是根指数,不能省略。读作读作:三次根号三次根号 a a思考:思考:如果正方体的体积为如果正方体的体积为5 5cmcm3 3,正方体的棱,正方体的棱长又该是多少?长又该是多少?设正方体的棱长为设正方体的棱长为X,X,则则 所以正方体的棱长是所以正方体的棱长是.2.2.求一个数的立方根的运算求一个数的立方根的运算,叫做叫做开立方开立方立方立方开立方开立方互逆互逆到现在我们学了几种运算到现在我们学了几种运算?+,-,x,乘方乘方,开方开方(开平方开平方,开立方开立方)2.2.立方根的性质立方根的性质探究探究1.1.根据立方根的意义填空根据立方根的意义填空.因为因为 =8,所以,所以8的立方根是()的立方根是()因为因为()=0.125,所以所以0.125的立方根是()的立方根是()因为因为(),所以的立方根是(),所以的立方根是()因为因为 ()8,所以,所以8的立方根是(的立方根是()因为因为(),所以,所以 的立方根(的立方根()022121-20-232-32-你能看出正数你能看出正数,0,0,负数的立方根各有什么特点负数的立方根各有什么特点?正数有立方根吗?如果有,有几个正数有立方根吗?如果有,有几个?负数呢?负数呢?零呢?零呢?一个正数有一个正的立方根;一个正数有一个正的立方根;一个负数有一个负的立方根,一个负数有一个负的立方根,零的立方根是零。零的立方根是零。(1)立方根的特征立方根的特征讨论讨论:你能归纳出平方根和立方根的异同点吗你能归纳出平方根和立方根的异同点吗?被开方数被开方数平方根平方根立方根立方根有两个互为相反数有两个互为相反数有一个有一个,是正数是正数无平方根无平方根零零有一个有一个,是负数是负数零零正数正数负数负数零零练一练练一练1.1.判断下列说法是否正确判断下列说法是否正确,并说明理由并说明理由x(2)25(2)25的平方根是的平方根是5 5x(3)-64(3)-64没有立方根没有立方根x(4)(4)-4-4的平方根是的平方根是x(5)0(5)0的平方根和立方根都是的平方根和立方根都是0 0(1)的立方根是的立方根是立方根是它本身的数有那些立方根是它本身的数有那些?有有1,-1,0平方根是它本身的数呢平方根是它本身的数呢?只有只有0想一想想一想引伸探究引伸探究2 2因为因为 =,=所以所以因为因为=,=所以所以猜一猜猜一猜:你能从上述问题中总结出互为相反数的两个数你能从上述问题中总结出互为相反数的两个数a a与与-a-a的立方根的关系吗的立方根的关系吗?a3-a3=-2-2=-3-3互为相反数的数的互为相反数的数的立方根也互为相反立方根也互为相反数数例例:求下列各式的值求下列各式的值(1)(2)(3)解解:(1)=4(2)=-5(3)=34-归纳归纳:求一个负数的立方根求一个负数的立方根,可以先求出这个负数绝可以先求出这个负数绝对值的立方根对值的立方根,然后再取它的相反数然后再取它的相反数.探究探究3 3先填写下表先填写下表,再回答问题再回答问题:a0.0000010.001 1100010000000.010.1110100从上面表格中你发现什么从上面表格中你发现什么?归纳归纳:被开方数扩大被开方数扩大(缩小缩小)1000)1000倍时倍时,它的立方根扩它的立方根扩大大(缩小缩小)10)10倍倍.课堂练习课堂练习2:你能求出下列各式中的未知数你能求出下列各式中的未知数x吗?吗?(1)x3343(2)()(x1)3125解解:x7x-15 X=6(3)(4)(3)x23(4)X-243X66x8已知半径为已知半径为r 的球,其体积的球,其体积 的计的计 算公式为算公式为 如果甲、乙两如果甲、乙两球球 体积的比为体积的比为1:8,则甲、乙两球的半径比,则甲、乙两球的半径比为为 .Rr乙乙甲甲 1 2:跳一跳:跳一跳:课堂小结课堂小结相同点相同点:0的平方根、立方根都有一个是的平方根、立方根都有一个是0 平方根、立方根都是开方的结果。平方根、立方根都是开方的结果。不同点:不同点:定义不同定义不同 个数不同个数不同 表示方法不同表示方法不同 被开方数的取值范围不同被开方数的取值范围不同1.立方根的定义立方根的定义,性质性质,计算计算.2.立方根与平方根的异同立方根与平方根的异同1 1、平方根的定义:如果、平方根的定义:如果、平方根的定义:如果、平方根的定义:如果一个数的平方等于一个数的平方等于一个数的平方等于一个数的平方等于a,那那那那么这个数叫做么这个数叫做么这个数叫做么这个数叫做a的平方根。的平方根。的平方根。的平方根。a a的平方根用的平方根用的平方根用的平方根用2 2、平方根的性质、平方根的性质、平方根的性质、平方根的性质 (1 1)一个正数有两个平方根,)一个正数有两个平方根,)一个正数有两个平方根,)一个正数有两个平方根,这两个平方根互为相反数这两个平方根互为相反数这两个平方根互为相反数这两个平方根互为相反数 (2 2)0 0的平方根还是的平方根还是的平方根还是的平方根还是0 0 (3 3)负数没有平方根)负数没有平方根)负数没有平方根)负数没有平方根3 3、平方根的求法:、平方根的求法:、平方根的求法:、平方根的求法:如求如求如求如求4 4的平方根:的平方根:的平方根:的平方根:(2)2=4 4的平方根是的平方根是2即1 1、立方根的定义:如果、立方根的定义:如果、立方根的定义:如果、立方根的定义:如果一个数的立方等于一个数的立方等于一个数的立方等于一个数的立方等于a,那那那那么这个数叫做么这个数叫做么这个数叫做么这个数叫做a的立方根。的立方根。的立方根。的立方根。a a的立方根用的立方根用的立方根用的立方根用 表示表示表示表示2 2、立方根的性质、立方根的性质、立方根的性质、立方根的性质 (1 1)正数的立方根还是正数)正数的立方根还是正数)正数的立方根还是正数)正数的立方根还是正数 (2 2)0 0的平方根还是的平方根还是的平方根还是的平方根还是0 0 (3 3)负数的立方根还是负数)负数的立方根还是负数)负数的立方根还是负数)负数的立方根还是负数3 3、立方根的求法:、立方根的求法:、立方根的求法:、立方根的求法:如求如求如求如求8 8的立方根:的立方根:的立方根:的立方根:23=8 8的立方根是的立方根是2即课后课后作业:作业: