欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2021-2022学年基础强化北师大版九年级数学下册第三章-圆专题测评试题(含答案解析).docx

    • 资源ID:77372831       资源大小:709.22KB        全文页数:27页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2021-2022学年基础强化北师大版九年级数学下册第三章-圆专题测评试题(含答案解析).docx

    北师大版九年级数学下册第三章 圆专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点A,B,C都在O上,连接CA,CB,OA,OB若AOB=140°,则ACB为( )A40°B50°C70°D80°2、下列说法中,正确的是()A相等的圆心角所对的弧相等B过任意三点可以画一个圆C周长相等的圆是等圆D平分弦的直径垂直于弦3、如图,FA、FB分别与O相切于A、B两点,点C为劣弧AB上一点,过点C的切线分别交FA、FB于D、E两点,若F60°,FDE的周长为12,则O的半径长为()AB2C2D34、在半径为6cm的圆中,的圆心角所对弧的弧长是( )AcmBcmCcmDcm5、如图,ABCD是的内接四边形,则的度数是( )A50°B100°C130°D120°6、如图,点A,B,C在O上,ACB37°,则AOB的度数是( )A73°B74°C64°D37°7、如图,菱形中,以为圆心,长为半径画,点为菱形内一点,连,若,且,则图中阴影部分的面积为( )ABCD8、如图,在半径为5的圆O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为( )A3B4CD9、如图,在中,连接AC,CD,则AC与CD的关系是( )ABCD无法比较10、如图,ABC内接于O,BD为O的直径,且BD2,则DC( )A1BCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点D是O上一点,C是弧AB的中点,若ACB116°,则BDC的度数是 _°2、若弧长为的扇形的圆心角为直角,则该扇形的半径为_3、一个正多边形的中心角是,则这个正多边形的边数为_4、以平面直角坐标系原点O为圆心,半径为3的圆与直线x=3的位置关系是_5、如图,正方形ABCD内接于O,点P在上,则BPC的度数为_三、解答题(5小题,每小题10分,共计50分)1、(教材呈现)下图是华师版九年级下册数学教材第43页的部分内容圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等由圆周角定理,可以得到以下推论:推论1 90°的圆周角所对的弦是直径(如图)(推论证明)已知:ABC的三个顶点都在O上,且ACB90° 求证:线段AB是O的直径 请你结合图写出推论1的证明过程(深入探究)如图,点A,B,C,D均在半径为1的O上,若ACB90°,ACD60°则线段AD的长为 (拓展应用)如图,已知ABC是等边三角形,以AC为底边在三角形ABC外作等腰直角三角形ACD,点E是BC的中点,连结DE 若AB,则DE的长为 2、如图,四边形ABCD内接于O,OC2,AC2 (1)求点O到AC的距离;(2)求ADC的度数3、如图,M是CD的中点,EMCD,若CD4,EM6,求所在圆的半径4、在平面直角坐标系xOy中,已知抛物线(1)求抛物线顶点Q的坐标;(用含b的代数式表示)(2)抛物线与x轴只有一个公共点,经过点(0,2)的直线与抛物线交于点A,B,与x轴交于点K判断AOB的形状,并说明理由;已知E(2,0),F(4,0),设AOB的外心为M,当点K在线段EF上时,求点M的纵坐标m的取值范围5、如图,以四边形的对角线为直径作圆,圆心为,点、在上,过点作的延长线于点,已知平分(1)求证:是切线;(2)若,求的半径和的长-参考答案-一、单选题1、C【分析】根据圆周角的性质求解即可【详解】解:AOB=140°,根据同弧所对的圆周角是圆心角的一半,可得,ACB=70°,故选:C【点睛】本题考查了圆周角定理,解题关键是明确同弧所对的圆周角是圆心角的一半2、C【分析】根据确定圆的条件,圆心角、弦、弧之间的关系,垂径定理和圆周角定理逐个判断即可【详解】A、在同圆或等圆中,相等的圆心角所对的弧相等,故本选项说法不正确;B、不在同一直线上的三个点确定一个圆,若这三个点在一条直线上,就不能确定圆,故本选项说法不正确;C、周长相等半径就相等,半径相等的两个圆能重合,故本选项说法正确;D、平分弦(不是直径)的直径垂直于弦,故本选项说法不正确;故选:C【点睛】本题考查的是对圆的认识,圆心角、弦、弧之间的关系,垂径定理,利用相关的知识逐项判断是基本的方法3、C【分析】根据切线长定理可得,、,再根据F60°,可知为等边三角形,再FDE的周长为12,可得,求得,再作,即可求解【详解】解:FA、FB分别与O相切于A、B两点,过点C的切线分别交FA、FB于D、E两点,则:、,F60°,为等边三角形,FDE的周长为12,即,即,作,如下图:则,设,则,由勾股定理可得:,解得,故选C【点睛】此题考查了圆的有关性质,切线的性质、切线长定理,垂径定理以及等边三角形的判定与性质,解题的关键是灵活运用相关性质进行求解4、C【分析】直接根据题意及弧长公式可直接进行求解【详解】解:由题意得:的圆心角所对弧的弧长是;故选C【点睛】本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键5、B【分析】根据圆的内接四边形对角互补求得,进而根据圆周角定理求得【详解】解:ABCD是的内接四边形,故选B【点睛】本题考查了圆内接四边形对角互补,圆周角定理,求得是解题的关键6、B【分析】根据圆中同弧或等弧多对应的圆周角是圆心角的一半,可知AOB=2ACB=74°,即可得出答案【详解】解:由图可知,AOB在O中为对应的圆周角,ACB在O中为对应的圆心角,故:AOB=2ACB=74°故答案为:B【点睛】本题主要考查的是圆中的基本性质,同弧对应的圆周角与圆心角度数的关系,熟练掌握圆中的基本概念是解本题的关键7、C【分析】过点P作交于点M,由菱形得,由,得,故可得,根据SAS证明,求出,即可求出【详解】如图,过点P作交于点M,四边形ABCD是菱形,在与中,在中,即,解得:,故选:C【点睛】此题主要考查了菱形的性质以及求不规则图形的面积等知识,掌握扇形的面积公式是解答此题的关键8、D【分析】作OMAB于M,ONCD于N,根据垂径定理、勾股定理得:OM=ON=4,再根据四边形MONP是正方形,故可求解【详解】作OMAB于M,ONCD于N,连接OB,OD,OB=5,BM= ,OM=AB=CD=8,ON=OM=4,弦AB、CD互相垂直,DPB=90°,OMAB于M,ONCD于N,OMP=ONP=90°四边形MONP是矩形,OM=ON,四边形MONP是正方形,OP=3故选C【点睛】本题考查了垂径定理及勾股定理的知识,解题的关键是正确地作出辅助线9、B【分析】连接AB,BC,根据得,再根据三角形三边关系可得结论【详解】解:连接AB,BC,如图,又 故选:B【点睛】本题考查了三角形三边关系,弧、弦的关系等知识,熟练掌握上述知识是解答本题的关键10、C【分析】根据三角形内角和定理求得,根据同弧所对的圆周角相等可得,根据直径所对的圆周角是直角,含30度角的直角三角形的性质,勾股定理即可求得的长【详解】解:为O的直径,在, BD2,故选C【点睛】本题考查了三角形内角和定理,同弧所对的圆周角相等,直径所对的圆周角是直角,勾股定理,含30度角的直角三角形的性质,求得是解题的关键二、填空题1、32【分析】根据圆内接四边形的性质得出ADB+ACB180°,求出ADB64°,根据C是弧AB的中点求出,根据圆周角定理得出BDCADCADB,再求出答案即可【详解】解:A、C、B、D四点共圆,ADB+ACB180°,ACB116°,ADB180°116°64°,C是弧AB的中点,BDCADCADB32°,故答案为:32【点睛】本题考查四点共圆性质,圆周角与弧的关系,掌握四点共圆性质,圆周角与弧的关系是解题关键2、4【分析】利用扇形的弧长公式表示出扇形的弧长,将已知的圆心角及弧长代入,即可求出扇形的半径【详解】解:扇形的圆心角为90°,弧长为2,即,则扇形的半径r=4故答案为:4【点睛】本题考查了弧长的计算公式,扇形的弧长公式为(n为扇形的圆心角度数,r为扇形的半径),熟练掌握弧长公式是解本题的关键3、九9【分析】根据正多边形的每个中心角相等,且所有中心角的度数和为360°进行求解即可【详解】解:设这个正多边形的边数为n,这个正多边形的中心角是40°,这个正多边形是九边形,故答案为:九【点睛】本题主要考查了正多边形的性质,熟知正多边形中心角的度数和为360度是解题的关键4、相切【分析】本题应将原点到直线x=3的距离与半径对比即可判断【详解】解:原点到直线x=3的距离为3,半径为3,则有3=3,这个圆与直线x=3相切故答案为:相切【点睛】本题考查了直线与圆的位置关系、坐标与图形性质直线与圆相切,直线到圆的距离等于半径;与圆相离,直线到圆的距离大于半径5、45°度【分析】连接OB、OC,根据正方形的性质得到BOC的度数,利用圆周角与圆心角的关系得到答案【详解】解:连接OB、OC,四边形ABCD是正方形,BOC=90°,BPC=,故答案为:45°【点睛】此题考查了圆内接正方形的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半,熟记各知识点是解题的关键三、解答题1、【推论证明】见解析;【深入探究】;【拓展应用】【分析】推论证明:根据圆周角定理求出,即可证明出线段AB是O的直径;深入探究:连接AB,首先根据ACB90°得出AB是O的直径,然后求出,然后根据同弧所对的圆周角相等得到,然后根据30°角直角三角形的性质求出BD的长度,最后根据勾股定理即可求出AD的长度;拓展应用:连接AE,作CFDE交DE于点F,首先根据等边三角形三线合一的性质求出,然后证明出A,E,C,D四点共圆,然后根据同弧或等弧所对的圆周角相等求出,最后根据等腰直角三角形的性质和30°角直角三角形的性质,结合勾股定理求解即可【详解】解:推论证明:,A,B,O三点共线,又点O是圆心,AB是O的直径;深入探究:如图所示,连接AB,ACB90°AB是O的直径ACD60°在中,;拓展应用:如图所示,连接AE,作CFDE交DE于点F,ABC是等边三角形,点E是BC的中点,又以AC为底边在三角形ABC外作等腰直角三角形ACD,点A,E,C,D四点都在以AC为直径的圆上,CFDE是等腰直角三角形,解得:在中,【点睛】此题考查了圆周角定理,90°的圆周角所对的弦是直径,相等的圆周角所对的弧相等,等边三角形和等腰直角三角形的性质等知识,解题的关键是熟练掌握以上知识点和性质定理2、(1);(2) .【分析】(1)连接OA,作OHAC于H,根据勾股定理的逆定理得到AOC=90°,根据等腰直角三角形的性质解答; (2)根据圆周角定理求出B,根据圆内接四边形的性质计算,得到答案【详解】解:(1)连接OA,作OHAC于H, OA2+OC2=8,AC2=8, OA2+OC2=AC2, AOC为等腰直角三角形, OH= AC=,即点O到AC的距离为; (2) B=AOC=45°, 四边形ABCD内接于O, ADC=180°-45°=135°【点睛】本题考查的是圆内接四边形的性质,圆周角定理,勾股定理的逆定理,掌握圆内接四边形对角互补是解本题的关键3、【分析】根据垂径定理的推论,可得EM过O的圆心点O, CMCD2 ,然后设半径为x,可得OM6x,再由勾股定理,即可求解【详解】解:连接OC,M是CD的中点,EMCD,EM过O的圆心点O, CMCD2 , 设半径为x,EM6,OMEMOE6x, 在RtOCM中,OM2CM2OC2, 即(6x)222x2,解得:x 所在圆的半径为【点睛】本题主要考查了垂径定理,勾股定理,熟练掌握垂径定理及其推论,勾股定理是解题的关键4、(1)(-b,-b2);(2)直角三角形,见解析;94m3【分析】(1)y=x2+bx=(x+b)2-b2,即可求解;(2)求出抛物线的表达式为y=x2,联立y=x2和y=kx+2并整理得:x2-2kx-4=0,证明ADOOEB,即可求解;AOB的外心为M,则点M是AB的中点,MP是梯形BADG的中位线,则m=k2+2,进而求解【详解】解:(1)y=x2+bx=(x+b)2-b2,抛物线的顶点Q坐标为(-b,-b2);(2)抛物线与x轴只有一个公共点,=b2-4××0=0,解得b=0,抛物线的表达式为y=x2,如下图,分别过点A、B作x轴的垂线,垂足分别为D、G,设经过点(0,2)的直线的表达式为y=kx+2,联立y=x2和y=kx+2并整理得:x2-2kx-4=0,则x1+x2=2k,x1x2=-4,y1=x12,y2=x22,则y1y2=x12x22=4=-x1x2,AD=y1,DO=-x1,BE=y2,OE=x2,ADO=BEO=90°,ADOOEB,AOD=OBE,OBG+BOG=90°,BOG+AOD=90°,即AOBO,AOB为直角三角形;过点A作x轴的平行线交EB的延长线于点H,过点M作MN与y轴平行,交AH于N,AOB的外心为M,MNy轴BH,点M是AB的中点,MP是梯形ABGD的中位线,MP=(AD+BG)=(y2+y1),则m=MP=(y1+y2)=(kx1+2+kx2+2)= k(x1+x2)+4=k2+2,令y=kx+2=0,解得x=-,即点K的坐标为(-,0),由题意得:2-4,解得-1k且k0,k2+23,即点M的纵坐标m的取值范围m3【点睛】本题主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系5、(1)证明见解析(2)【分析】(1)连接OA,根据已知条件证明OAAE即可解决问题;(2)取CD中点F,连接OF,根据垂径定理可得OFCD,所以四边形AEFO是矩形,利用勾股定理即可求出结果(1)证明:如图,连接OA,AECD,DAE+ADE=90°DA平分BDE,ADE=ADO,又OA=OD,OAD=ADO,DAE+OAD=90°,OAAE,AE是O切线;(2)解:如图,取CD中点F,连接OF,OFCD于点F四边形AEFO是矩形,CD=6,DF=FC=3在RtOFD中,OF=AE=4,在RtAED中,AE=4,ED=EF-DF=OA-DF=OD-DF=5-3=2,AD的长是【点睛】本题考查了切线的判定与性质,垂径定理,圆周角定理,勾股定理,解决本题的关键是掌握切线的判定与性质

    注意事项

    本文(2021-2022学年基础强化北师大版九年级数学下册第三章-圆专题测评试题(含答案解析).docx)为本站会员(可****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开