欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年必考点解析北师大版九年级数学下册第三章-圆专题训练试题(含答案及详细解析).docx

    • 资源ID:77374101       资源大小:704.55KB        全文页数:26页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年必考点解析北师大版九年级数学下册第三章-圆专题训练试题(含答案及详细解析).docx

    北师大版九年级数学下册第三章 圆专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是( )A直径所对圆周角为B如果点在圆上,那么点到圆心的距离等于半径C直径是最长的弦D垂直于弦的直径平分这条弦2、如图,在圆中半径OC弦AB,且弦ABCO2,则图中阴影部分面积为( )ABCD3、如图,直径AB6的半圆,绕B点顺时针旋转30°,此时点A到了点A',则图中阴影部分的面积是()ABCD34、如图,点A,B,C都在O上,连接CA,CB,OA,OB若AOB=140°,则ACB为( )A40°B50°C70°D80°5、如图,有一个弓形的暗礁区,弓形所含的圆周角,船在航行时,为保证不进入暗礁区,则船到两个灯塔A,B的张角应满足的条件是( )ABCD6、如图,AB是O的直径,弦CDAB于E,若OA2,B60°,则CD的长为( )AB2C2D47、如图,在中,连接AC,CD,则AC与CD的关系是( )ABCD无法比较8、在数轴上,点A所表示的实数为3,点B所表示的实数为a,A的半径为2,下列说法错误的是()A当a5时,点B在A内B当1a5时,点B在A内C当a1时,点B在A外D当a5时,点B在A外9、如图,ABC内接于O,BAC30°,BC6,则O的直径等于()A10B6C6D1210、如图,AB是O的直径,CD为弦,CDAB于点E,则下列结论中不成立是( )A弧AC弧ADB弧BC弧BDCCEDEDOEBE第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,PM,PN分别与O相切于A,B两点,C为O上异于A,B的一点,连接AC,BC若P58°,则ACB的大小是_2、如图,点O和点I分别是ABC的外心和内心,若BOC130°,则BIC_3、如图,AB是O的直径,AT是O的切线,ABT50°,BT交O于点C,点E是AB上一点,延长CE交O于点D,则CDB_4、小明烘焙了几款不同口味的饼干,分别装在同款的圆柱形盒子中为区别口味,他打算制作“* 饼干”字样的矩形标签粘贴在盒子侧面为了获得较好的视觉效果,粘贴后标签上边缘所在弧所对的圆心角为90°(如图)已知该款圆柱形盒子底面半径为6 cm,则标签长度l应为_ cm(取3.1)5、如图,将半径为4,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O,B,连接BB,则图中阴影部分的面积是_三、解答题(5小题,每小题10分,共计50分)1、如图,O是四边形ABCD的外接圆,AD为O的直径连结BD,若(1)求证:12(2)当AD4,BC4时,求ABD的面积2、新定义:在一个四边形中,若有一组对角都等于90°,则称这个四边形为双直角四边形如图1,在四边形ABCD中,AC90°,那么四边形ABCD就是双直角四边形(1)若四边形ABCD是双直角四边形,且AB3,BC4,CD2,求AD的长;(2)已知,在图2中,四边形ABCD内接与O,BCCD且BAC45°;求证:四边形ABCD是双直角四边形;若ABAC,AD1,求AB的长和四边形ABCD的面积3、如图,为的直径,弦的延长线相交于点,且求证:4、如图,有一座圆弧形拱桥,桥下水面宽度AB为12m,拱高CD为4m(1)求拱桥的半径(2)有一艘宽为7.8m的货船,船舱顶部为长方形,并高出水面3m,则此货船是否能顺利通过此圆弧形拱桥?并说明理由5、如图,已知P是O上一点,用两种不同的方法过点P作O的一条切线要求:用直尺和圆规作图-参考答案-一、单选题1、A【分析】定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.【详解】A选项,直径所在的圆心角是180°,直接可以由圆周角定理推导出:直径所对的圆周角为,A选项符合要求;B、C选项,根据圆的定义可以得到;D选项,是垂径定理;故选:A【点睛】本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.2、C【分析】连接OA,OB,根据平行线的性质确定,再根据AB=CO和圆的性质确定是等边三角形,进而得出,最后根据扇形面积公式即可求解【详解】解:如下图所示,连接OA,OB,S阴=S扇形AOBAO,BO,CO都是的半径,AO=BO=COAB=CO=2,AO=BO=AB=2是等边三角形S阴=S扇形AOB=故选:C【点睛】本题考查平行线的性质,等边三角形的判定定理,扇形面积公式,综合应用这些知识点是解题关键3、D【分析】阴影面积为旋转后为直径的半圆面积加旋转后扇形面积减去旋转前为直径的半圆面积,则阴影面积为旋转后的扇形面积,由扇形面积公式计算即可【详解】直径AB6的半圆,绕B点顺时针旋转30°又AB=6,ABA=30°故答案为:D【点睛】本题考查了扇形面积公式的应用,扇形面积公式为,由旋转的性质得出阴影面积为扇形面积是解题的关键4、C【分析】根据圆周角的性质求解即可【详解】解:AOB=140°,根据同弧所对的圆周角是圆心角的一半,可得,ACB=70°,故选:C【点睛】本题考查了圆周角定理,解题关键是明确同弧所对的圆周角是圆心角的一半5、D【分析】本题利用了三角形外角与内角的关系和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半【详解】如图,AS交圆于点E,连接EB,由圆周角定理知,AEB=C=50°,而AEB是SEB的一个外角,由AEBS,即当S50°时船不进入暗礁区所以,两个灯塔的张角ASB应满足的条件是ASB50°cosASBcos50°,故选:D【点睛】本题考查三角形的外角的性质,圆周角定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题6、B【分析】先证明是等边三角形,再证明求解从而可得答案.【详解】解: 是等边三角形, 故选B【点睛】本题考查的是等边三角形的判定与性质,垂径定理的应用,锐角三角函数的应用,证明是等边三角形是解本题的关键.7、B【分析】连接AB,BC,根据得,再根据三角形三边关系可得结论【详解】解:连接AB,BC,如图,又 故选:B【点睛】本题考查了三角形三边关系,弧、弦的关系等知识,熟练掌握上述知识是解答本题的关键8、A【分析】根据数轴以及圆的半径可得当d=r时,A与数轴交于两点:1、5,进而根据点到圆心的距离与半径比较即可求得点与圆的位置关系,进而逐项分析判断即可【详解】解:圆心A在数轴上的坐标为3,圆的半径为2,当d=r时,A与数轴交于两点:1、5,故当a=1、5时点B在A上;当dr即当1a5时,点B在A内;当dr即当a1或a5时,点B在A外由以上结论可知选项B、C、D正确,选项A错误故选A【点睛】本题考查了数轴,点与圆的位置关系,掌握点与圆的位置关系是解题的关键9、D【分析】连接OB,OC,根据圆周角定理求出BOC的度数,再由OB=OC判断出OBC是等边三角形,由此可得出结论【详解】解:连接OB,OC,BAC=30°,BOC=60°OB=OC,BC=6,OBC是等边三角形,OB=BC=6O的直径等于12故选:D【点睛】本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键10、D【分析】根据垂径定理解答【详解】解:AB是O的直径,CD为弦,CDAB于点E,弧AC弧AD,弧BC弧BD,CEDE,故选:D【点睛】此题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧,熟记定理是解题的关键二、填空题1、或【分析】如图,连接利用切线的性质结合四边形的内角和定理求解再分两种情况讨论,结合圆周角定理与圆的内接四边形的性质可得答案.【详解】解:如图,连接 (即)分别在优弧与劣弧上, PM,PN分别与O相切于A,B两点, 故答案为:或【点睛】本题考查的是切线的性质定理,圆周角定理的应用,圆的内接四边形的性质,四边形的内角和定理的应用,求解是解本题的关键.2、122.5°【分析】如图所示,作ABC外接圆,利用圆周角定理得到A=65°,由于I是ABC的内心,则BIC=180°-ABC-ACB,然后把BAC的度数代入计算即可【详解】解:如图所示,作ABC外接圆,点O是ABC的外心,BOC=130°,A=65°,ABC+ACB=115°,点I是ABC的内心,IBC+ICB=×115°=57.5°,BIC=180°57.5°=122.5°故答案为:122.5°【点睛】此题主要考查了三角形内心和外心的综合应用,根据题意得出IBC+ICB的度数是解题关键3、40°【分析】由直径所对的圆周角是直角和同弧所对的圆周角相等得CDB的度数【详解】解:连接AC,由AB是O的直径,得ACB90°,CAB90°ABT40°,CDBCAB40°,故答案为:40°【点睛】本题考查了圆周角定理,熟练掌握运用同弧所对的圆周角相等解答是关键4、9.3【分析】根据弧长公式进行计算即可,【详解】解:粘贴后标签上边缘所在弧所对的圆心角为90°,底面半径为6 cm,cm,故答案为:【点睛】本题考查了弧长公式,牢记弧长公式是解题的关键5、【分析】连接,证明是含30°的,根据即可求解【详解】解:如图,连接,将半径为4,圆心角为120°的扇形OAB绕点A逆时针旋转60°,,是等边三角形,三点共线,是等边三角形又【点睛】本题考查了求扇形面积,旋转的性质,掌握旋转的性质是解题的关键三、解答题1、(1)见解析;(2)【分析】(1)先证明,再根据同圆中,等弧所对的圆周角相等即可证明;(2)过O点作OEBC于点E,连接OB,由垂径定理可得BE=CE=,由勾股定理求出,即可得到【详解】解:(1),1=2;(2)过O点作OEBC于点E,连接OB,BE=CE=,AD为O的直径,OB=,【点睛】本题主要考查了垂径定理,勾股定理,同圆中等弧所对的圆周角相等,解题的关键在于能够熟练掌握圆的相关知识2、(1);(2)见解析;【分析】(1)连接BD,运用勾股定理求出BD和AD即可;(2)连接OB,OC,OD,证明BD是的直径即可;过点D作于点E,设圆的半径为R,由勾股定理求出AB,AD,BC,CD的长,再根据运用三角形面积公式求解即可【详解】解:(1)连接BD,如图,在中,BC4,CD2,在中,AB3,BD2 ,(2)连接OB,OC,OD,如图, 在和中 O是线段BD的中点,BD为的直径 四边形ABCD是双直角四边形;(3)过点D作于点E, 是等腰直角三角形在中, 设圆的半径为R,和均为等腰直角三角形,在中,在中,解得,【点睛】本题主要考查了勾股定理,圆周角定理,三角形面积计算等知识,灵活添加辅助线是解答本题的难点3、见解析【分析】如图:连接AC,根据为的直径可得ACB=90°,即ACBP.再根据BC=PC可知AC为BP的垂直平分线可得AB=AP,根据等腰三角形的性质得到P=B,最后由三角形外角的性质即可证明【详解】证明:如图:连接AC,AB为圆O的直径,ACB=90°,即ACBP.BC=PC,AC为BP的垂直平分线,AB=AP,P=B,BAD=P+B=2P【点睛】本题主要考查了圆周角定理、垂直平分线的判定与性质、三角形外角的性质等知识点,根据题意作出辅助线、构造出圆周角是成为解答本题的关键4、(1)6.5米;(2)不能顺利通过,理由见解析【分析】(1)设圆心为O,连接OC,OB,拱桥的半径r米,作出相应图形,然后在RtODB中,利用勾股定理求解即可得;(2)考虑当弦长为7.8时,利用(1)中结论,可得弦心距,即可得出结论【详解】(1)如图所示,设圆心为O,连接OC,OB,拱桥的半径r米,在RtODB中,解得米;(2)当弦长为7.8时,弦心距此货船不能顺利通过此圆弧形拱桥【点睛】题目主要考查圆的基本性质,垂径定理,求弦心距,勾股定理等,理解题意,作出相应辅助线,结合性质定理是解题关键5、见详解【分析】方法一:连接OP,并延长,以点P为圆心,OP长为半径画弧,交OP的延长线于点C,然后再以点O、C为圆心,大于OC长的一半为半径画弧,交于点M、N,则问题可求解;方法二:连接OP,以点P为圆心,OP长为半径画弧,交圆O于点D,连接OD并延长,然后以点D为圆心OD长为半径画弧,交OD的延长线于点E,连接PE,则问题可求解【详解】解:方法一如图所示:直线MN即为O的切线;方法二如图所示:则PE即为O的切线【点睛】本题主要考查切线的性质,熟练掌握切线的性质是解题的关键

    注意事项

    本文(2022年必考点解析北师大版九年级数学下册第三章-圆专题训练试题(含答案及详细解析).docx)为本站会员(可****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开