2022年最新人教版八年级数学下册第十九章-一次函数综合测评试题(无超纲).docx
-
资源ID:77374222
资源大小:339.33KB
全文页数:31页
- 资源格式: DOCX
下载积分:9金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年最新人教版八年级数学下册第十九章-一次函数综合测评试题(无超纲).docx
人教版八年级数学下册第十九章-一次函数综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一次函数y=kx+b(k0)的图象如图所示,当x>2时,y的取值范围是( )Ay<0By>0Cy<3Dy>32、如图,图中的函数图象描述了甲乙两人越野登山比赛(x表示甲从起点出发所行的时间,表示甲的路程,表示乙的路程)下列4个说法:越野登山比赛的全程为1000米;甲比乙晚出发40分钟;甲在途中休息了10分钟;乙追上甲时,乙跑了750米其中正确的说法有( )个A1B2C3D43、已知直线交轴于点,交轴于点,直线与直线关于轴对称,将直线向下平移8个单位得到直线,则直线与直线的交点坐标为( )ABCD4、变量,有如下关系:;其中是的函数的是( )ABCD5、在函数ykx+3(k0)的图象上有A(1,y1)、B(2,y2)、C(4,y3)三个点,则下列各式中正确的是()Ay1y2y3By2y1y3Cy3y1y2Dy3y2y16、关于函数有下列结论,其中正确的是( )A图象经过点B若、在图象上,则C当时,D图象向上平移1个单位长度得解析式为7、一次函数ykx+b的图象如图所示,则下列说法错误的是()Ay随x的增大而减小Bk0,b0C当x4时,y0D图象向下平移2个单位得yx的图象8、甲、乙二人约好同时出发,沿同一路线去某博物馆参加科普活动,如图,x表示的是行走时间(单位:分),y表示的是甲到出发地的距离(单位:米),最后两人都到达了目的地根据图中提供的信息,下面有四个结论:甲、乙二人第一次相遇后,停留了10分钟;甲先到达目的地;甲停留10分钟之后提高了行走速度;甲行走的平均速度要比乙行走的平均速度快其中正确的是( )ABCD9、已知一次函数yaxb(a0)的图象经过点(0,1)和(1,3),则ba的值为( )A1B0C1D210、若一次函数ykx+b(k,b为常数,且k0)的图象经过A(0,1),B(1,1),则不等式kx+b10的解集为()Ax0Bx0Cx1Dx1第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、函数的定义域是_2、在平面直角坐标系中,A(2,0),B(4,0),若直线yx+b上存在点P满足45°APB90°且PAPB,则常数b的取值范围是_3、在平面直角坐标系中,点A的坐标为,点B的坐标为,点P在y轴上,当的值最小时,P的坐标是_4、若函数ykx+b(k,b为常数)的图象如图所示,那么当0y1时,x的取值范围是 _5、已知直线yax1与直线y=2x+1平行,则直线yax1不经过第 _象限三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,直线AB交x轴于点A3,0,交y轴正半轴于点B,且OA=2OB,正比例函数y=x交直线AB于点P,PMx轴于点M,PNy轴于点N(1)求直线AB的函数表达式和点P的坐标;(2)在y轴负半轴上是否存在点Q,使得APQ为等腰三角形?若存在,求出所有符合条件的点Q的坐标;若不存在,请说明理由2、已知函数y2|12x-1|,当x2时,y12x+3则:(1)当x2时,y ;根据x2时y的表达式,补全表格、如图的函数图象x21012y0.51.5(2)观察(1)的图象,该函数有最 值(填“大”或“小”),是 ,你发现该函数还具有的性质是 (写出一条即可);(3)在如图的平面直角坐标系中,画出y16x13的图象,并指出2|12x1|16x13时,x的取值范围3、如图,这是反映爷爷一天晚饭后从家中出发去红旗河体育公园锻炼的时间与离家距离之间关系的一幅图(1)爷爷这一天从公园返回到家用多长时间?(2)爷爷散步时最远离家多少米?(3)爷爷在公园锻炼多长时间?(4)直接写出爷爷在出发后多长时间离家450m4、如图,在平面直角坐标系中,已知直线ykx+3与x轴相交于点A(2,0),与y轴交于点B(1)求k的值及AOB的面积;(2)已知点M(3,0),若点P是直线AB上的一个动点,当PBM的面积与AOB的面积相等时,求点P的坐标5、某公司销售A、B两种型号教学设备,每台的销售成本和售价如表:型号AB成本(万元/台)35售价(万元/台)48已知每月销售两种型号设备共20台,设销售A种型号设备x台,A、B两种型号设备全部售完后获得毛利润y万元(毛利润售价-成本)(1)求y关于x的函数关系式(不要求写自变量的取值范围);(2)若销售两种型号设备的总成本不超过80万元,那么公司如何安排销售A、B两种型号设备,售完后毛利润最大?并求出最大毛利润-参考答案-一、单选题1、A【解析】【分析】观察图象得到直线与x轴的交点坐标为(2,0),根据一次函数性质得到y随x的增大而减小,所以当x2时,y0【详解】一次函数y=kx+b(k0)与x轴的交点坐标为(2,0),y随x的增大而减小,当x2时,y0故选:A【点睛】本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k0)的图象为直线,当k0,图象经过第一、三象限,y随x的增大而增大;当k0,图象经过第二、四象限,y随x的增大而减小;直线与x轴的交点坐标为2、C【解析】【分析】根据终点距离起点1000米即可判断;根据甲、乙图像的起点可以判断;根据AB段为甲休息的时间即可判断;设乙需要t分钟追上甲,求出t即可判断【详解】解:由图像可知,从起点到终点的距离为1000米,故正确;根据图像可知甲出发40分钟之后,乙才出发,故乙比甲晚出发40分钟,故错误;在AB段时,甲的路程没有增加,即此时甲在休息,休息的时间为40-30=10分钟,故正确;乙从起点到终点的时间为10分钟,乙的速度为1000÷10=100米/分钟,设乙需要t分钟追上甲,解得t=7.5,乙追上甲时,乙跑了7.5×100=750米,故正确;故选C【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像3、A【解析】【分析】设直线的解析式为 ,把点,点代入,可得到直线的解析式为,从而得到直线的解析式为 ,再由直线与直线关于轴对称,可得点关于轴对称的点为 ,然后设直线的解析式为 ,可得直线的解析式为,最后将直线与直线的解析式联立,即可求解【详解】解:设直线的解析式为 ,把点,点代入,得: ,解得:,直线的解析式为,将直线向下平移8个单位得到直线,直线的解析式为 ,点关于轴对称的点为 ,设直线的解析式为 ,把点 ,点代入,得: ,解得:,直线的解析式为,将直线与直线的解析式联立,得: ,解得: ,直线与直线的交点坐标为故选:A【点睛】本题主要考查了一次函数的平移,一次函数与二元一次方程组的关系,熟练掌握一次函数的平移特征,一次函数与二元一次方程组的关系是解题的关键4、B【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数即可【详解】解:满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;,当时,则y不是x的函数;综上,是函数的有故选:B【点睛】本题主要考查了函数的定义在一个变化过程中,有两个变量x、y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数5、C【解析】【分析】根据一次函数图象的增减性来比较A、B、C三点的纵坐标的大小即可【详解】解:一次函数解析式ykx+3(k0),该函数图象上的点的y值随x的增大而减小又412,y3y1y2故选:C【点睛】本题主要考查了一次函数图象上点坐标特征掌握一次函数的增减性是解答本题的关键6、D【解析】【分析】根据题意易得,然后根据一次函数的图象与性质可直接进行排除选项【详解】解:A、当x=-1时,则有y=-2×(-1)-2=0,故点不在一次函数的图象上;不符合题意;B、,y随x的增大而减小,若、在图象上,则有,即,故不符合题意;C、当y=0时,则有-2x-2=0,解得x=-1,所以当x-1时,y0,则当时,故不符合题意;D、图象向上平移1个单位长度得解析式为,正确,故符合题意;故选D【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键7、B【解析】【分析】由一次函数的图象的走势结合一次函数与轴交于正半轴,可判断A,B,由图象可得:当x4时,函数图象在轴的下方,可判断C,先求解一次函数的解析式,再利用一次函数图象的平移可判断D,从而可得答案.【详解】解:一次函数ykx+b的图象从左往右下降,所以y随x的增大而减小,故A不符合题意;一次函数ykx+b, y随x的增大而减小,与轴交于正半轴,所以 故B符合题意;由图象可得:当x4时,函数图象在轴的下方,所以y0,故C不符合题意;由函数图象经过 ,解得: 所以一次函数的解析式为: 把向下平移2个单位长度得:,故D不符合题意;故选B【点睛】本题考查的是一次函数的性质,一次函数的平移,利用待定系数法求解一次函数的解析式,掌握“一次函数的图象与性质”是解本题的关键.8、A【解析】【分析】由图象可得:10分钟到20分钟之间,路程没有变化,可判断,由甲35分钟时到达目的地,乙40分钟到达,可判断,分别求解前后两段时间内甲的速度可判断,由前后两段时间内甲的速度都比乙快,可判断,从而可得答案.【详解】解:由图象可得:甲、乙二人第一次相遇后,停留了201010(分钟),故符合题意;甲在35分时到达,乙在40分时到达,所以甲先到达的目的地,故符合题意;甲前面10分钟的速度为:每分钟米,甲在停留10分钟之后的速度为:每分钟米,所以减慢了行走速度,故不符合题意;由图象可得:两段路程甲的速度都比乙快,所以甲行走的平均速度要比乙行走的平均速度快,故符合题意;所以正确的是故选:A【点睛】本题考查的是从函数图象中获取信息,理解题意,弄懂图象上点的坐标含义是解本题的关键.9、A【解析】【分析】用待定系数法求出函数解析式,即可求出a和b的值,进而可求出代数式的值【详解】解:把点(0,1)和(1,3)代入yax+b,得:,解得,ba121故选:A【点睛】本题主要考查待定系数法求一次函数解析式,了解一次函数图象上点的坐标代入函数解析式是解题关键10、D【解析】【分析】利用函数的增减性和x=1时的函数图像上点的位置来判断即可【详解】解:如图所示:k0,函数y= kx+b随x的增大而增大,直线过点B(1,1),当x=1时,kx+b=1,即kx+b-1=0,不等式kx+b10的解集为:x1故选择:D【点睛】此题主要考查了一次函数与一元一次不等式,正确数形结合分析是解题关键二、填空题1、【解析】【分析】函数关系中主要有二次根式根据二次根式的意义,被开方数是非负数【详解】解:根据题意得:3x+60,解得x2故答案为:x2【点睛】本题主要考查自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数2、2b3+2或34b4【解析】【分析】利用PAPB可得点P在线段AB的垂直平分线上,分b0或b0两种情况讨论解答:求出当APB90°和APB45°时的b值,结合图象即可求得b的取值范围【详解】解:A(2,0),B(4,0),AB6PAPB,点P在线段AB的垂直平分线上,设线段AB的垂直平分线交x轴于点C,则点C(1,0),OC1当b0时,设直线yx+b交x轴于点D,交y轴于点E,则D(b,0),E(0,b)ODb,OEbODEOED45°,DCOD+OCb+1当APB90°时,如图,PCOE,CPEOED45°PCDCb+1,C为斜边AB的中点,PCAB3b+13b2当APB45°时,如图,过点A作AFBP于点F,APB45°,AFPF设AFPFx,则PAx,PAPB,PBx,BFPBPFxAF2+BF2AB2,x218+9,6(b+1)xxb3+245°APB90°,2b3+2当b0时,设直线yx+b交x轴于点D,交y轴于点E,则D(b,0),E(0,b)ODb,OEbODEOED45°,DCOD+OCb1当APB90°时,如图,PCOE,CPEOED45°PCDCb1,C为斜边AB的中点,PCAB3b13b4当APB45°时,如图,过点A作AFBP于点F,APB45°,AFPF设AFPFx,则PAx,PAPB,PBx,BFPBPFxAF2+BF2AB2,x218+9,6(b1)xxb3445°APB90°,34b4综上,常数b的取值范围是:2b3+2或34b4故答案是:2b3+2或34b4【点睛】本题主要考查了一次函数的应用,垂直平分线的性质,勾股定理,准确计算是解题的关键3、(0,1)【解析】【分析】如图,作点A关于y轴的对称点A,连接BA交y轴于P,连接PA,点P即为所求求出直线BA的解析式即可解决问题;【详解】解:如图,作点A关于y轴的对称点A,连接BA交y轴于P,连接PA,点P即为所求设直线BA的解析式为ykxb,A(1,2),B(2,1),则有:,解得,直线BA的解析式为yx1,令x=0,y=1P(0,1),故答案为:(0,1)【点睛】本题考查轴对称最短问题,一次函数的应用等知识,解题的关键是学会利用轴对称解决最短问题,学会构建一次函数解决交点坐标问题4、0x<2【解析】【分析】根据一次函数图象的性质利用数形结合可直接解答【详解】解:由一次函数的图象可知,当 时,x的取值范围是故答案为:【点睛】本题考查的是根据一次函数与坐标轴的交点求自变量的范围,利用数形结合的思想是解答此题的关键5、二【解析】【分析】根据两直线平行一次项系数相等,求出a,即可判断yax1经过的象限【详解】解:直线yax1与直线y=2x+1平行, a=2,直线yax1的解析式为y2x1直线y2x1 ,经过一、三、四象限,不经过第二象限;故答案为:二【点睛】本题考查了一次函数图象的性质与系数之间的关系,两直线平行一次项系数相等是解题的关键三、解答题1、(1)直线AB的解析式为y=-12x+32;P(1,1);(2)当点Q为(0,-1)或(0,-72)时,APQ为等腰三角形,理由见详解【解析】【分析】(1)根据点A的坐标及OA=2OB,可确定点B(0,32),设直线AB的解析式为:y=kx+b(k0),将A、B两点代入求解即可确定函数解析式;将两个一次函数解析式联立解方程组即可确定点P的坐标;(2)设Q(0,y)且y<0,由P,A坐标可得线段AP,AQ, PQ的长度,然后根据等腰三角形进行分类:当AP=PQ时,当AP=AQ时,当PQ=AQ时,分别进行求解即可得【详解】解:(1)A(3,0),OA=3,OA=2OB,OB=32,B(0,32),设直线AB的解析式为:y=kx+b(k0),将A、B两点代入可得:0=3k+b32=b,解得:k=-12b=32,直线AB的解析式为y=-12x+32;将两个一次函数解析式联立可得:y=-12x+32y=x,解得:x=1y=1,P(1,1);(2)设Q(0,y)且y<0,由P(1,1),A(3,0)可得:AP=(3-1)2+12=5,AQ=32+y2, PQ=(1-y)2+12,APQ为等腰三角形,需分情况讨论:当AP=PQ时,可得5=(1-y)2+12,解得:y=-1或y=3(舍去);当AP=AQ时,可得:5=32+y2,方程无解;当PQ=AQ时,可得:32+y2=1-y2+12,解得:y=-72,综上可得:当点Q为(0,-1)或(0,-72)时,APQ为等腰三角形【点睛】题目主要考查利用待定系数法确定一次函数解析式、一次函数交点与方程组的关系、等腰三角形的性质、坐标系中两点之间的距离等,理解题意,综合运用这些知识点是解题关键2、(1)12x+1,表格及图像见详解;(2)大,2,关于直线x=2对称;(3)-2<x<4【解析】【分析】(1)根据绝对值的性质化简得到y=2-|12x-1|=2-(1-12x)=12x+1;根据解析式补全表格,然后根据两点补全图象;(2)根据图象即可求得;(3)在同一平面直角坐标系中,画出y=16x+13的图象,根据图象即可求得【详解】解:(1)当x<2时,y=2-|12x-1|=2-(1-12x)=12x+1补全表格:x21012y00.511.52利用两点画出函数图象如图:(2)由图象可知:该函数有最大值,是2该函数还具有的性质是关于直线x=2对称;故答案为:大,2,关于直线x=2对称;(3)在同一平面直角坐标系中,画出y=16x+13的图象如图:由图象可知:2-|12x-1|>16x+13时,x的取值范围-2<x<4,【点睛】本题考查了一次函数的图象,一次函数与一元一次不等式的关系,一次函数的性质,数形结合是解题的关键3、(1)15;(2)900;(3)10;(4)10分钟或3712分钟【解析】【分析】(1)根据图中表示可得结果;(2)根据图象可知最远就是到公园的距离;(3)根据图象可得平行的部分就是在公园的时间;(4)求出相应直线的函数解析式,即可得解;【详解】(1)由图可知,时间为45-30=15(分);(2)由图可知,最远离家900米;(3)爷爷在公园锻炼的时间30-20=10(分);(4)如图,设直线AB所在解析式为y=kx,把点(20,900)代入可得:k=45,解析式为y=45x,当y=450时,x=45045=10;设直线CD所在解析式为y=mx+n,把点(30,900),(45,0)代入得,900=30m+n0=45m+n,解得m=-60n=2700,解析式为y=-60x+2700,当y=450时,x=3712;爷爷在出发后10分钟或3712分钟离家450m【点睛】本题主要考查了函数图像的应用,准确分析计算是解题的关键4、(1)k=-32,SAOB=3;(2)P的坐标为(4,3)或(4,9)【解析】【分析】(1)由题意将点A的坐标代入函数解析式求得k的值,根据直线方程求得点B的坐标,然后求得相关线段的长度,由三角形的面积公式解答;(2)根据题意进行分类讨论:点P在x轴的上方和下方,两种情况,利用三角形的面积公式和已知条件,列出方程,利用方程求得点P的坐标即可【详解】解:(1)将点A(2,0)代入直线ykx+3,得02k+3,解得k32,y32x+3当x0时,y3B(0,3),OB3A(2,0),OA2,SAOB12OAOB12×2×33;(2)M(3,0),OM3,AM321由(1)知,SAOB3,SPBMSAOB3;当点P在x轴下方时,SPBMSPAM+SABM12AMOB+12AM|yP|12×1×3+12×1×|yP|3,|yP|3,点P在x轴下方,yP3当y3时,代入y32x+3得,332x+3,解得:x4P(4,3);当点P在x轴上方时,SPBMSAPMSABM12AM|yP|12AMOB12×1×|yP|323,|yP|9,点P在x轴上方,yP9当y9时,代入y32x+3得,932x+3,解得:x4P(4,9)综上,点P的坐标为(4,3)或(4,9)【点睛】本题考查一次函数图象上点的坐标特征,三角形的面积,运用点的坐标与图形的知识求出相关线段的长度是解题的关键注意分类讨论和“数形结合”数学思想的应用5、(1)y=-2x+60;(2)公司生产A,B两种品牌设备各10台,售完后获利最大,最大毛利润为40万元【解析】【分析】(1)设销售A种品牌设备x台,B种品牌设备(20-x)台,算出每台的利润乘对应的台数,再合并在一起即可求出总利润;(2)由“生产两种品牌设备的总成本不超过80万元”,列出不等式,再由(1)中的函数的性质得出答案【详解】解:(1)设销售A种型号设备x台,则销售B种型号设备(20-x)台,依题意得:y=(4-3)x+(8-5)×(20-x),即y=-2x+60;(2)3x+5×(20-x)80,解得x10-2<0,当x=10时,y最大=40万元故公司生产A,B两种品牌设备各10台,售完后获利最大,最大毛利润为40万元【点睛】本题考查了一次函数的应用,一元一次不等式的应用,注意题目蕴含的数量关系,正确列式解决问题