2021-2022学年人教版八年级数学下册第二十章-数据的分析综合练习试题.docx
-
资源ID:77374375
资源大小:338.93KB
全文页数:21页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年人教版八年级数学下册第二十章-数据的分析综合练习试题.docx
人教版八年级数学下册第二十章-数据的分析综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、请根据“2021年全运会金牌前十排行榜”判断,金牌数这一组数据的中位数为( )排名12345678910代表团山东广东浙江江苏上海湖北福建湖南四川辽宁金牌数A36B27C35.5D31.52、班长王亮依据今年月“书香校园”活动中全班同学的课外阅读数量单位:本,绘制了如图折线统计图,下列说法正确的是( )A每月阅读数量的平均数是B众数是C中位数是D每月阅读数量超过的有个月3、13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的()A方差B众数C平均数D中位数4、某校九年级(3)班全体学生2021年中考体育模拟考试的成绩统计如表:成绩(分)36404346485054人数(人)2567875根据上表中的信息判断,下列结论中错误的是( )A该班一共有40名同学B该班学生这次考试成绩的众数是48分C该班学生这次考试成绩的中位数是47分D该班学生这次考试成绩的平均数是46分5、甲、乙两位同学连续五次的数学成绩如下图所示:下列说法正确的是( )A甲的平均数是70B乙的平均数是80CS2甲S2乙DS2甲S2乙6、5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是( )A7B8C9D107、下列说法中正确的是( )A样本7,7,6,5,4的众数是2B样本2,2,3,4,5,6的中位数是4C样本39,41,45,45不存在众数D5,4,5,7,5的众数和中位数相等8、已知一组数据85,80,x,90的平均数是85,那么x等于( )A80B85C90D959、某校男子足球队的年龄分布如图条形图所示,则这些队员年龄的众数是( )A8B13C14D1510、已知一组数据3,7,5,3,2,这组数据的众数为( )A2B3C4D5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一组数据6、8、10、10,数据的众数是 _,中位数是 _2、已知一组数据2,5,x,6的平均数是5,则这组数据的中位数是_3、一组数据6,2,1,3的极差为_4、甲、乙两射击运动员10次射击训练的平均成绩恰好都是8.5环,方差分别是,则在本次测试中,_运动员的成绩更稳定(填“甲”或“乙”)5、随机从甲,乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为,则小麦长势比较整齐的试验田是_三、解答题(5小题,每小题10分,共计50分)1、国家应急管理部、司法部、中华全国总工会、全国普法办共同举办的第三届全国应急管理普法知识竞赛于今年10月18日开赛某校学生处在七年级和八年级开展了应急管理普法知识竞赛活动,并从七、八年级各随机抽取了40名同学的知识竞赛成绩数据,并将数据进行整理分析(竞赛成绩用x表示,共分为四个等级:Ax<70,B70x<80,C80x<90,D90x100);下面给出了部分信息:七年级C等级中全部学生的成绩为:86, 87, 83, 88, 84, 88, 86, 89, 89, 85八年级D等级中全部学生的成绩为:92, 95, 98, 98, 98, 98, 98, 100, 100, 100七八年级抽取的学生知识竞赛成绩统计表平均数中位数众数满分率七年级91bc25%八年级918798m%根据以上信息,解答下列问题:(1)直接写出上述表中a,b,c,m的值;(2)根据以上数据,你认为该校七、八年级的知识竞赛,哪个年级的成绩更好,并说明理由(写出一条理由即可);(3)该校七年级的1800名学生和八年级的240名学生参加了此次知识竞赛,若成绩在90分(包含90分)以上为优秀,请你估计两个年级此次参加知识竞赛优秀的总人数2、为迎接中国共产党建党100周年,某校开展了以“不忘初心跟党走”为主题的读书活动,学校对本校八年级学生9月份“阅读该主题相关书籍的读书量”(简称“读书量”)进行了随机抽样调查,对所有随机抽取学生的“读书量”(单位:本)进行了统计,并将调查结果绘制成如下两幅不完整的统计图(1)请直接补全条形统计图;(2)本次所抽取学生9月份“读书量”的众数为 本,中位数为 本;(3)根据抽样调查的结果,请你估计该校八年级1000名学生中,9月份“读书量”不少于4本的学生人数3、甲、乙、丙三名候选人要参加学校学生会干部竞选,按程序分别进行答辩、笔试和民主投票答辩、笔试成绩如下表所示,学生民主投票每张选票只限填写甲、乙、丙中的一人,且每张选票记1分统计得票后,绘出如下所示不完整的统计图答辩、笔试成绩统计表人员甲乙丙答辩成绩(分)958886笔试成绩(分)808690根据以上信息,请解答下列问题(1)参加投票的共有_人,乙的得票率是_(2)补全条形统计图(3)学校将答辩、笔试和学生投票三项得分按4:4:2的比例确定每位候选人的总成绩,总成绩最高者当选,试通过计算说明哪位候选人当选4、4,7,6,3,6,3的众数是什么?5、教育局为了了解初三男生引体向上的成绩情况,随机抽测了本区部分学校初三男生,并将测试成绩绘成了如下两幅不完整的统计图请你根据图中的信息,解答下列问题:(1)写出扇形图中 ,并补全条形图;(2)在这次抽测中,测试成绩的众数和中位数分别是 个, 个;(3)该区初三年级共有男生2400人,如果引体向上达6个以上(含6个)得满分,请你估计该区男生的引体向上成绩能获得满分的有多少名?-参考答案-一、单选题1、D【解析】【分析】根据中位数定义解答将这组数据从小到大的顺序排列,第5、6个数的平均数为中位数【详解】解:将这组数据从小到大的顺序排列处于中间位置的数即第5名和第6名的金牌数是36、27,那么由中位数的定义可知,这组数据的中位数是故选D【点睛】本题为统计题,考查中位数的意义将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错2、D【解析】【分析】根据平均数的计算方法,可判断A;根据众数的定义,可判断B;根据中位数的定义,可判断C;根据折线统计图中的数据,可判断D【详解】解:A、每月阅读数量的平均数是,故A错误,不符合题意;B、出现次数最多的是,众数是,故B错误,不符合题意;C、由小到大顺序排列数据,中位数是,故C错误,不符合题意;D、由折线统计图看出每月阅读量超过的有个月,故D正确,符合题意;故选:D【点睛】本题考查了折线统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键折线统计图表示的是事物的变化情况注意求中位数先将该组数据按从小到大或按从大到小的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数3、D【解析】【分析】由于有13名同学参加歌咏比赛,要取前6名参加决赛,故应考虑中位数的大小【详解】解:共有13名学生参加比赛,取前6名,所以小红需要知道自己的成绩是否进入前六我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小红知道这组数据的中位数,才能知道自己是否进入决赛故选:D【点睛】本题考查了用中位数的意义解决实际问题将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数4、D【解析】【分析】由题意直接根据总数,众数,中位数的定义逐一判断即可得出答案.【详解】解:该班一共有:2+5+6+7+8+7+5=40(人),得48分的人数最多,众数是48分,第20和21名同学的成绩的平均值为中位数,中位数为(分),平均数是(分),故A、B、C正确,D错误,故选:D【点睛】本题主要考查众数和中位数、平均数,解题的关键是掌握众数和中位数、平均数的概念5、D【解析】【分析】根据折线统计图中的信息分别计算甲、乙的平均数和方差,即可求得答案【详解】由条形统计图可知,甲的平均数是,故A选项不正确;乙的平均数是,故B选项不正确;甲的方差为,乙的方差为,故C选项不正确,D选项正确;故选D【点睛】本题考查了折线统计图,求平均数,求方差,从统计图获取信息是解题的关键6、C【解析】【分析】设报4的人心想的数是x,则可以分别表示报1,3,5,2的人心想的数,最后通过平均数列出方程,解方程即可【详解】解:设报4的人心想的数是x,报1的人心想的数是10x,报3的人心想的数是x6,报5的人心想的数是14x,报2的人心想的数是x12,所以有x12x2×3,解得x9故选:C【点睛】此题考查了平均数和一元一次方程的应用,解题的关键是正确分析题目中的等量关系列方程求解7、D【解析】【分析】根据众数定义和中位数定义对各选项进行一一分析判定即可【详解】A. 样本7,7,6,5,4的重复次数最多的数是7,所以众数是7,故选项A不正确;B. 样本2,2,3,4,5,6的处于中间位置的两个数是3和4,所以中位数是,故选项B不正确;C. 样本39,41,45,45重复次数最多的数字是45,故选项C不正确;D. 5,4,5,7,5,将数据重新排序为4,5,5,5,7,重复次数最多的众数是5和中位数为5,所以众数和中位数相等,故选项D正确故选D【点睛】本题考查众数与中位数,掌握众数与中位数定义,一组数据中重复次数最多的数据是众数,将一组数据从小到大排序后,处于中间位置,或中间位置上两个数据的平均数是中位数是解题关键8、B【解析】【分析】由平均数的公式建立关于x的方程,求解即可【详解】解:由题意得:(85+x+80+90)÷4=85解得:x=85故选:B【点睛】本题考查了平均数,应用了平均数的计算公式建立方程求解9、C【解析】【分析】根据众数的定义:一组数据中出现次数最多的那个数,称为这组数据的众数,据此结合条形图可得答案【详解】解:由条形统计图知14岁出现的次数最多,所以这些队员年龄的众数为14岁,故选C【点睛】本题考查了众数的定义及条形统计图的知识,解题的关键是能够读懂条形统计图及了解众数的定义10、B【解析】【分析】根据众数的定义(一组数据中,出现次数最多的数据,叫这组数据的众数)即可求出这组数据的众数【详解】解:在这组数据中3出现了2次,出现的次数最多,则这组数据的众数是3;故选:B【点睛】此题考查了众数的定义;熟记众数的定义是解决问题的关键二、填空题1、 10 9【解析】【分析】先把数据按由小到大的顺序排列,然后根据中位数和众数的定义求解;【详解】解:由题意可把数据按由小到大的顺序排列为6、8、10、10,所以该组数据的中位数为9,众数为10;故答案为10,9【点睛】本题主要考查众数和中位数,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数2、5.5【解析】【分析】先计算x,后计算中位数【详解】解:2,5,x,6的平均数是5,(25x6)÷45,解得:x7,把这组数据从小到大排列为:2,5,6,7,则这组数据的中位数是5.5;故答案为:5.5【点睛】本题考查了平均数,中位数,熟练掌握平均数,中位数的计算方法是解题的关键3、5【解析】【分析】根据极差的概念,求解即可,一组数据的最大值与最小值的差为极差【详解】解:根据极差的定义可得,这组数据的极差为故答案为【点睛】此题考查了极差的求解,解题的关键是掌握极差的定义4、甲【解析】【分析】先根据甲的方差比乙的方差小,再根据方差越大,波动就越大,数据越不稳定,方差越小,波动越小,数据越稳定即可得出答案【详解】解:,甲运动员比乙运动员的成绩稳定;故答案为:甲【点睛】本题考查了方差的意义,解题的关键是掌握方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好5、乙【解析】【分析】方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定,据此判断出小麦长势比较整齐的是哪块试验田即可【详解】解:,3.84,S乙2S甲2,小麦长势比较整齐的试验田是乙试验田故答案为:乙【点睛】本题主要考查了方差的意义和应用,要熟练掌握,解答此题的关键是要明确:方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定三、解答题1、(1)a=10,b=89,c=100,m=7.5;(2)七年级的成绩更好,理由见解析;(3)估计两个年级此次知识竞赛中优秀的人数约为873人【分析】(1)用七年级C等人数除以40即可得出C等所占比例,再用单位“1”分别减去B、C、D所占比例即可得出a的值;根据中位数的定义(将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数)可得b的值;根据众数的定义(一组数据中出现次数最多的数据叫做众数)可得c的值;用满分人数除以40即可得出m的值;(2)根据中位数,满分率解答即可;(3)总人数乘以90分(包含90分)以上人数所占比例即可【详解】解:(1)七年级C等有10人,C等所占比例为×100%25%,a%=1-20%-45%-25%=10%,a=10,七年级A等有:40×10%=4(人),B等有:40×20%=8(人),把七年级所抽取了40名同学的知识竞赛成绩从低到高排列,排在最中间的是第20名和第21名的成绩,分别是89,89,中位数b=89;七年级满分人数为:40×25%=10(人),众数c=100;八年级满分率为:×100%7.5%,m=7.5;(2)因为两个年级的平均数相同,而七年级的中位数、众数和满分率都过于八年级,所以七年级的成绩更好;(3)1800×45%+250××100%873(人),答:估计两个年级此次知识竞赛中优秀的人数约为873人【点睛】本题考查扇形统计图、中位数、众数、平均数、利用数据进行决策,用样本估计总体等知识点,熟悉掌握相关知识点是正确解答的关键2、(1)见解析;(2)3,3;(3)估计该校八年级学生中,9月份“读书量”不少于4本的学生有300人【分析】(1)由2本人数及其所占百分比可得总人数,再根据百分比之和为1求出读书4本的人数所占百分比,最后乘以总人数得到其人数即可补全图形;(2)根据众数、中位数的定义即可得出答案;(3)总人数乘以样本中“读书量”不少于4本的学生人数所占百分比即可【详解】解:(1)抽样调查的学生总数为:=50(人),“读书量”4本的人数所占的百分比是1-10%-10%-20%-40%=20%,“读书量”4本的人数有:50×20%=10(人),补全图1的统计图如下,(2)根据统计图可知众数为3,把这些数从小到大排列,中位数是第25、26个数的平均数,则中位数是=3(本);故答案为:3,3;(3)根据题意得,1000×(10%+20%)=300(人),答:估计该校八年级学生中,9月份“读书量”不少于4本的学生有300人【点睛】本题考查的是条形统计图和扇形统计图的综合运用读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小3、(1)600;36%;(2)见解析;(3)乙当选【分析】(1)选票的总数=选择甲的人数÷甲的得票率,乙的得票率=1-甲的得票率-丙的得票率;(2)求出丙的人数,补全图(2)的条形统计图;(3)由题意可分别求得三人的得分,比较得出结论【详解】解:(1)参加投票的人数,乙的得票率故答案为:600;36%;(2)丙的得票数,补全的条形统计图见下图所示:(3)将答辩、笔试和学生投票三项得分按4:2:2的比例确定每人的总成绩:(分);(分);(分)因为,所以乙当选【点睛】本题考查条形统计图、扇形统计图,同时还要掌握加权平均数的计算方法,熟练掌握加权平均数的定义是解答本题的关键4、6和3【分析】根据众数的定义(一组数据中,出现次数最多的数据,叫这组数据的众数)得出即可【详解】解:数据4,7,6,3,6,3中6和3的出现的次数最多,数据4,7,6,3,6,3的众数是6和3【点睛】本题考查了众数的定义,能熟记众数的定义是解此题的关键5、(1)25%,补全的条形图见解析;(2)5,5;(3)该区引体向上的男生能获得满分的有1080名【分析】(1)根据扇形统计图可以求得a的值,根据扇形统计图和条形统计图可以得到做6个的学生数,从而可以将条形图;(2)根据(1)中补全的条形图可以得到众数和中位数;(3)根据统计图可以估计该区体育中考中选报引体向上的男生能获得满分的人数【详解】解:(1)由题意可得,a=1-30%-15%-10%-20%=25%,做6 个的学生数是60÷30%×25%=50,补全的条形图,如图所示,故答案为:25%;(2)由补全的条形图可知,引体向上5个的学生有60人,人数最多,所以众数是5个;共200名同学,排序后第100名与第101名同学的成绩都是5个,故中位数为(5+5)÷2=5(个),故答案为:5,5;(3)该区引体向上的男生能获得满分的有:2400×(25%+20%)=1080(名),即该区引体向上的男生能获得满分的有1080名【点睛】本题考查了条形统计图、扇形统计图、众数、中位数、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题