2021-2022学年人教版九年级数学下册第二十八章-锐角三角函数章节训练试题(精选).docx
-
资源ID:77374944
资源大小:765.04KB
全文页数:28页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年人教版九年级数学下册第二十八章-锐角三角函数章节训练试题(精选).docx
人教版九年级数学下册第二十八章-锐角三角函数章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、小金将一块正方形纸板按图1方式裁剪,去掉4号小正方形,拼成图2所示的矩形,若已知AB9,BC16,则3号图形周长为()A B C D2、如图,AB是河堤横断面的迎水坡,堤高AC,水平距离BC1,则斜坡AB的坡度为()ABC30°D60°3、如图,中,它的周长为22若与,三边分别切于E,F,D点,则劣弧的长为( )ABCD4、边长都为4的正方形ABCD和正EFG如图放置,AB与EF在一条直线上,点A与点F重合,现将EFG沿AB方向以每秒1个单位长度的速度匀速运动,当点F与点B重合时停止,在这个运动过程中,正方形ABCD和EFG重合部分的面积S与运动时间t的函数图象大致是()ABCD5、某山坡坡面的坡度,小刚沿此山坡向上前进了米,小刚上升了( )A米B米C米D米6、在正方形网格中,ABC的位置如图所示,点A、B、C均在格点上,则cosB的值为()A B C D7、如图,正方形ABCD中,AB6,E为AB的中点,将ADE沿DE翻折得到FDE,延长EF交BC于G,FHBC,垂足为H,连接BF、DG以下结论:BFED;DFGDCG;FHBEAD;tanGEB;其中正确的个数是( )A4B3C2D18、在RtABC中,C90°,BC3,AC4,那么cosB的值等于()ABCD9、如图,中,点是边上一动点,连接,以为直径的圆交于点若长为4,则线段长的最小值为( )ABCD10、如图,AB是的直径,点C是上半圆的中点,点P是下半圆上一点(不与点A,B重合),AD平分交PC于点D,则PD的最大值为( )A B C D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在以AB为直径的半圆O中,C是半圆的三等分点,点P是弧BC上一动点,连接CP,AP,作OM垂直CP交AP于N,连接BN,若AB12,则NB的最小值是_2、计算:cos245°tan30°·sin60°sin245°_3、如图所示为4×4的网格,每个小正方形的边长均为1,则四边形AECF的面积为_;tanFAE=_4、如图,在中,点D是BC中点,点E、F分别在AB、AC上,连接DE、DF、EF,则EF的长为_5、如图,菱形ABCD中,ABC=120°,AB=1,延长CD至A1,使DA1=CD,以A1C为一边,在BC的延长线上作菱形A1CC1D1,连接AA1,得到ADA1;再延长C1D1至A2,使D1A2=C1D1,以A2C1为一边,在CC1的延长线上作菱形A2C1C2D2,连接A1A2,得到A1D1A2按此规律,得到A2020D2020A2021,记ADA1的面积为S1,A1D1A2的面积为S2,A2020D2020A2021的面积为S2021,则S2021=_三、解答题(5小题,每小题10分,共计50分)1、如图,AB是O的直径,弦CDAB与点E,点P在O上,1=C,(1)求证:CBPD;(2)若BC=6,sinP=,求O的直径2、计算:sin30°tan45°+sin260°2cos60°3、计算:4、如图,某风景区内有一瀑布,AB表示瀑布的垂直高度,在与瀑布底端同一水平位置的点D处测得瀑布顶端A的仰角为45°,斜坡CD的坡度i34,CD100米,在观景台C处测得瀑布顶端A的仰角为37°,若点B、D、E在同一水平线上,求瀑布的落差AB(参考数据:sin37°0.6,cos37°0.8,tan37°0.75)5、先化简,再求值:÷(1),其中x2tan60°-参考答案-一、单选题1、B【分析】设 而AB9,BC16,如图,由(图1)是正方形,(图2)是矩形,4号图形为小正方形,得到 再证明再建立方程求解,延长交于 则 再利用勾股定理求解 从而可得答案.【详解】解:如图,由题意得:(图1)是正方形,(图2)是矩形,4号图形为小正方形, 设 而AB9,BC16, 结合(图1),(图2)的关联信息可得: 整理得: 解得: 经检验:不符合题意,取 延长交于 则 四边形是矩形, 所以3号图形的周长为: 故选B【点睛】本题考查的是矩形的判定与性质,正方形的性质,锐角三角函数的应用,一元二次方程的应用,从(图形1)与(图形2)中的关联信息中得出图形中边的相等是解本题的关键.2、A【分析】直接利用坡度的定义得出,斜坡AB的坡度为:,进而得出答案【详解】解:由题意可得:ACB90°,则斜坡AB的坡度为:,故选:A【点睛】此题主要考查了解直角三角形的应用,正确掌握坡度的定义是解题关键3、B【分析】连接OD、OF,过点O作OGDF于点G,则,DOG=FOG,根据与,三边分别切于E,F,D点,可得AD=AF,BD=BE,CE=CF,ADO=AFO=90°,从而得到AD=AF=3,再由,可得 ,DOF=120°,从而求出OD,即可求解【详解】解:如图,连接OD、OF,过点O作OGDF于点G,则,DOG=FOG, 与,三边分别切于E,F,D点,AD=AF,BD=BE,CE=CF,ADO=AFO=90°,BC=8,BD+CF=BE+CE=BC=8,的周长为22AD+AF+BD+BE+CE+CF=22,AD+AF=6,AD=AF=3,ADF为等边三角形,DOF=120°,DF=AD=3, ,DOG=60°, ,劣弧的长为 故选:B【点睛】本题主要考查了圆的基本性质,垂径定理,求弧长,锐角三角函数,熟练掌握相关知识点是解题的关键4、C【分析】由题意知当t=2时,三角形和正方形重合一半面积,由此可列0t2和2t4分段函数【详解】当0t2时,设运动时GF与AD交于点H 四边形ABCD为正方形,三角形EFG为正三角形FAH=90°,AFH=60°AF=t,AH=tan 60°·AF=t,开口向上当2t4时,设运动时GE与AD交于点O四边形ABCD为正方形,三角形EFG为正三角形EAO=90°,OEA=60°AF=t,EA=4-t,AO=tan 60°·EA=(4-t),开口向下综上所述,由图象可知仅C选项满足两段函数故选:C【点睛】本题考查了动点的图像问题,做此类题需要弄清横纵坐标的代表量,并观察确定图像分为几段,弄清每一段自变量与因变量的变化情况及变化的趋势,主要是正负增减及变化的快慢等匀速变化呈现直线段的形式,平行于x轴的直线代表未发生变化,成曲线的形式需要看切线的坡度的大小确定变化的快慢5、B【分析】设出垂直高度,表示出水平距离,利用勾股定理求解即可【详解】解:设小刚上升了米,则水平前进了米根据勾股定理可得:解得即此时该小车离水平面的垂直高度为50米故选:B【点睛】考查了解直角三角形的应用坡度坡角问题和勾股定理,熟悉且会灵活应用公式:坡度垂直高度水平宽度是解题的关键6、B【分析】如图所示,过点A作AD垂直BC的延长线于点D得出ABD为等腰直角三角形,再根据45°角的余弦值即可得出答案【详解】解:如图所示,过点A作ADBC交BC延长线于点D,AD=BD=4,ADB=90°,ABD为等腰直角三角形,B=45°故选B【点睛】本题主要考查了求特殊角三角函数值,解题的关键在于根据根据题意构造直角三角形求解7、A【分析】根据正方形的性质以及折叠的性质依次对各个选项进行判断即可【详解】解:正方形ABCD中,AB=6,E为AB的中点AD=DC=BC=AB=6,AE=BE=3,A=C=ABC=90°ADE沿DE翻折得到FDEAED=FED,AD=FD=6,AE=EF=3,A=DFE=90°,BE=EF=3,DFG=C=90°,EBF=EFB,AED+FED=EBF+EFB,DEF=EFB,BFED,故结论正确;AD=DF=DC=6,DFG=C=90°,DG=DG,RtDFGRtDCG,结论正确;FHBC,ABC=90°ABFH,FHB=A=90°EBF=BFH=AED,FHBEAD,结论正确;RtDFGRtDCG,FG=CG,设FG=CG=x,则BG=6-x,EG=3+x,在RtBEG中,由勾股定理得:32+(6-x)2=(3+x)2,解得:x=2,BG=4,tanGEB=,故结论正确故选:A【点睛】本题考查了正方形的性质、折叠的性质、全等三角形的判定与性质、相似三角形的判定与性质、平行线的判定、勾股定理、三角函数,综合性较强8、D【分析】根据题意画出图形,求出AB的值,进而利用锐角三角函数关系求出即可【详解】解:如图,在RtABC中,C90°,BC3,AC4,cosB故选:D【点睛】本题考查了三角函数的定义,熟知余弦函数的定义是解题关键9、D【分析】如图,连接 由为直径,证明在以的中点为圆心,为直径的上运动,连接 交于点 则此时最小,再利用锐角的正弦与勾股定理分别求解,即可得到答案.【详解】解:如图,连接 由为直径, 在以的中点为圆心,为直径的上运动,连接 交于点 则此时最小, , 故选D【点睛】本题考查的是勾股定理的应用,圆外一点与圆的最短距离的理解,锐角的正弦的应用,掌握“圆外一点与圆的最短距离求解线段的最小值”是解本题的关键.10、A【分析】根据点C是半圆的中点,得到AC= BC,直径所对的圆周角是90°得到ACB=90°,同弧所对圆周角相等得到APC=ABC=45°,AD平分PAB得到 BAD = DAP,结合外角的性质可证CAD = CDA,由线段的和差解得PD=P-CD=P-1,由此可知当CP为直径时,PD最大,最后根据三角函数可得答案【详解】解:点C是半圆的中点, AC= BCAB是直径ACB=90°CAB = CBA= 45°同弧所对圆周角相等APC=ABC=45°AD平分PAB BAD = DAPCDA= DAP+ APC = 45°+ DAPCAD= CAB+BAD = 45°+ BADCAD = CDAAC=CD=1PD=P-CD=P-1当CP为直径时,PD最大RtABC中,ACB = 90°,CAB = 45°, CP的最大值是 PD的最大值是 -1,故选:A【点睛】本题考查了同弧所对圆周角相等、直径所对的圆周角是90°、角平分线的性质、三角形外角的性质、三角函数的知识,做题的关键是熟练掌握相关的知识点,灵活综合的运用二、填空题1、221-23#-23+221【解析】【分析】如图,连接AC,OC证明点N在T上,运动轨迹是OC ,过点T作THAB于H求出BT,TN,可得结论【详解】解:如图,连接AC,OCC是半圆的三等分点,AOC60°,OAOC,AOC是等边三角形,作AOC的外接圆T,连接TATC,TN,TBOMPC,CMPM,NCNP,NPCNCPAOC30°,CNM60°,CNO120°,CNOOAC180°,点N在T上,运动轨迹是OC,过点T作THAB于H在RtATH中,AHOH3,TAH30°,THAHtan30°,ATTN2HN2,在RtBHT中,BTTH2+BH2=32+92=221,BNBTTN,BN221-23,BN的最小值为221-23故答案为:221-23【点睛】本题考查点与圆的位置关系,等边三角形的判定和性质,解直角三角形,轨迹等知识,解题的关键是正确寻找点N的运动轨迹,属于中考填空题中的压轴题2、#0.5【解析】【分析】直接利用特殊角的三角函数值代入进而得出答案【详解】解:= .故答案为【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键3、 4, 【解析】【分析】(1)利用分割的思想得,即可求出;(2)连接,过点作,垂足为点,利用勾股定理求出即可求出【详解】解:(1)(2)连接,过点作,垂足为点,GF=2SAEFAE=75AG=AF2-GF2=52-(75)2=245tanFAE=GFAG=75245=724故答案为:4,【点睛】本题考查了勾股定理,锐角三角函数,解题的关键是利用分割的思想进行求解4、【解析】【分析】延长ED到G使DG=ED,连结GC,GF,过G作GHAC与H,根据点D为BC中点,得出BD=CD,先证BDECDG(SAS),可得BE=CG=3,B=GCD,得出GCH=DCG+ACB=B+ACB=60°,根据30°直角三角形先证可得HC=,利用锐角三角函数可求GH=cos30°GC=,在RtGHF中,FG=,再证,即,根据三角函数可求即可【详解】解:延长ED到G使DG=ED,连结GC,GF,过G作GHAC与H,点D为BC中点,BD=CD,在BDE和CDG中,BDECDG(SAS),BE=CG=3,B=GCD,B+ACB=180°-BAC=180°-120°=60°,GCH=DCG+ACB=B+ACB=60°,在RtGCH中,HGC=90°-HCG=30°,HC=,GH=cos30°GC=,CF=5,HF=CF-CH=5,在RtGHF中,FG=,即,在RtEFG中,故答案为【点睛】本题考查三角形全等判定与性质,三角形内角和,30°直角三角形性质,锐角三角函数,勾股定理,直角三角形判定与性质,本题难度较大,综合性强,利用辅助线构造准确图形是解题关键5、240383#3·24038【解析】【分析】由题意得BCD=60°,AB=AD=CD=1,则有ADA1为等边三角形,同理可得A1D1A2. A2020D2020A2021都为等边三角形,进而根据等边三角形的面积公式可得S1=34,S2=3,.由此规律可得Sn=322n-4,即可求解【详解】解:四边形是菱形,AB=AD=CD=1,ADBC,ABCD,ABC=120°,BCD=60°,ADA1=BCD=60°,DA1=CD,DA1=AD,ADA1为等边三角形,同理可得A1D1A2. A2020D2020A2021都为等边三角形,过点B作BECD于点E,如图所示:BE=BCsinBCD=32,S1=12A1DBE=34A1D2=34,同理可得:S2=34A2D12=34×22=3,S3=34A3D22=34×42=43,;由此规律可得:Sn=322n-4,S2021=3×22×2021-4=240383;故答案为:240383【点睛】本题考查了菱形的性质,等边三角形的性质与判定及三角函数,解题的关键是熟练掌握以上知识点三、解答题1、(1)见解析;(2)10【解析】【分析】(1)根据题意有,推出,故可证;(2)连接AC构造直角三角形,则,即,所以可以求得圆的直径【详解】(1),;(2)如图,连接AC,AB为O的直径,即,O的直径为10【点睛】本题考查圆的性质以及锐角三角函数,掌握相关知识点的应用是解题的关键2、【解析】【分析】将特殊角的三角形函数值代入计算即可【详解】原式【点睛】本题主要考查特殊角的三角函数值,牢记特殊角的三角函数值是解答的关键3、0【解析】【分析】根据化简绝对值,负整数指数幂,特殊角的三角函数值,进行混合运算即可【详解】解:原式【点睛】本题考查了化简绝对值,负整数指数幂,特殊角的三角函数值,牢记特殊角的三角函数值并正确的进行实数的混合运算是解题的关键4、480米【解析】【分析】首先根据斜坡CD的坡度i34,CD100米,求出CE60,DE80,然后得出三角形ABD是等腰直角三角形,进而得到ABBD,然后根据仰角的三角函数值列出方程求解即可【详解】解:,设CE3x,则DE4x在直角CDE中,CD100(3x)2(4x)21002解得:x20CE60,DE80在直角ADB中,ADB45°,三角形ABD是等腰直角三角形,ABBD作CFAB于F,则四边形CEBF是矩形CEBF60,CFBEAB80AFAB60,解得AB480答:瀑布的落差约为480米【点睛】此题考查了三角函数的应用,解题的关键是正确分析题目中的等量关系列方程求解5、,【解析】【分析】根据分式的运算法则化简,利用特殊角的三角函数值求出x代入即可求解【详解】÷(1)=x2tan60°=2×=6原式=【点睛】此题主要考查分式的化简求值,解题的关键是熟知分式的运算法则及特殊角的三角函数值