欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    双曲线的简单几何性质优质课件(一).ppt

    • 资源ID:77404943       资源大小:914KB        全文页数:18页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    双曲线的简单几何性质优质课件(一).ppt

    1复习回顾:双曲线的标准方程复习回顾:双曲线的标准方程:形式一:形式一:(焦点在(焦点在x轴上,(轴上,(-c,0)、)、(c,0)形式二:形式二:(焦点在(焦点在y轴上,(轴上,(0,-c)、()、(0,c)其中其中 双曲线的图象特双曲线的图象特点与几何性质到现点与几何性质到现在仍是一个谜在仍是一个谜?现在就用方现在就用方程来探究一下程来探究一下!类似于椭圆几何性质的研究类似于椭圆几何性质的研究.2 2、对称性、对称性 一、研究双曲线一、研究双曲线 的简单几何性质的简单几何性质1、范围、范围关于关于x轴、轴、y轴和原点都是对称轴和原点都是对称.x轴、轴、y轴是双曲线的对称轴,原点是对称中心轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的又叫做双曲线的中心中心.xyo-aa(-x,-y)(-x,y)(x,y)(x,-y)(下一页下一页)顶点顶点33、顶点、顶点(1)双曲线与对称轴的交点,叫做双曲线的)双曲线与对称轴的交点,叫做双曲线的顶点顶点xyo-bb-aa如图,线段如图,线段 叫做双曲线叫做双曲线的实轴,它的长为的实轴,它的长为2a,a叫做叫做实半轴长;线段实半轴长;线段 叫做双叫做双曲线的虚轴,它的长为曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长叫做双曲线的虚半轴长.(2)(3)实轴与虚轴等长的双曲线叫实轴与虚轴等长的双曲线叫等轴双曲线等轴双曲线.(下一页下一页)渐近线渐近线44、渐近线、渐近线xyoab利用渐近线可以较准确的画出利用渐近线可以较准确的画出双曲线的草图双曲线的草图(2)渐近线对双曲线的开口的影响渐近线对双曲线的开口的影响(3)动画演示点在双曲线上情况动画演示点在双曲线上情况 双曲线上的点与这两双曲线上的点与这两直线有什么位置关系呢直线有什么位置关系呢?(动画演示情况动画演示情况)(下一页下一页)离心率离心率如何记忆双曲线的渐近线方程?如何记忆双曲线的渐近线方程?55、离心率、离心率e是表示是表示双曲线双曲线开口开口大小的一个量大小的一个量,e 越大开口越大越大开口越大(动画演示动画演示)ca0e 1(4)等轴双曲线的离心率等轴双曲线的离心率e=?6例例1 求双曲线求双曲线 9y2-16x2=144的实半轴长和虚半轴长、的实半轴长和虚半轴长、焦点坐标、离心率、渐进线方程焦点坐标、离心率、渐进线方程.可得实半轴长可得实半轴长a=4,虚半轴长虚半轴长b=3焦点坐标为(焦点坐标为(0,-5)、()、(0,5)解:把方程化为标准方程解:把方程化为标准方程7例例2.4516线和焦点坐标线和焦点坐标程,并且求出它的渐近程,并且求出它的渐近出双曲线的方出双曲线的方轴上,中心在原点,写轴上,中心在原点,写焦点在焦点在,离心率离心率离是离是已知双曲线顶点间的距已知双曲线顶点间的距xe=思考思考:一个双曲线的渐近线的方程为一个双曲线的渐近线的方程为:,它的它的离心率为离心率为 .解:解:8 练习练习(1):(2):的的渐渐近近线线方程方程为为:的实轴长的实轴长 虚轴长为虚轴长为_ 顶点坐标为顶点坐标为 ,焦点坐标为焦点坐标为_ 离心率为离心率为_4的的渐渐近近线线方程方程为为:的的渐渐近近线线方程方程为为:的的渐渐近近线线方程方程为为:91011练习练习:求出下列双曲线的标准方程求出下列双曲线的标准方程1213142.2.求中心在原点,对称轴为坐标轴,经过点求中心在原点,对称轴为坐标轴,经过点P(1,(1,3)3)且离心率为且离心率为 的双曲线标准方程的双曲线标准方程.1 1.过点(过点(1,2),且渐近线为),且渐近线为的双曲的双曲线线方程是方程是_.15 3.求与求与椭圆椭圆有共同焦点,有共同焦点,渐渐近近线线方程方程为为的双曲的双曲线线方程。方程。解:解:椭圆椭圆的焦点在的焦点在x轴轴上,且坐上,且坐标为标为 双曲双曲线线的的渐渐近近线线方程方程为为 解出解出 16关于关于x轴、轴、y轴、原点对称轴、原点对称图形图形方程方程范围范围对称性对称性顶点顶点离心率离心率A1(-a,0),),A2(a,0)A1(0,-a),),A2(0,a)关于关于x轴、轴、y轴、原点对称轴、原点对称渐进线渐进线.yB2A1A2 B1 xOF2F1xB1yO.F2F1B2A1A2.F1(-c,0)F2(c,0)F2(0,c)F1(0,-c)17例例2双曲线型自然通风塔的外形,是双曲线双曲线型自然通风塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面,它的的一部分绕其虚轴旋转所成的曲面,它的最小半径为最小半径为12m,上口半径为上口半径为13m,下口半径下口半径为为25m,高高55m.选择适当的坐标系,求出此选择适当的坐标系,求出此双曲线的方程双曲线的方程(精确到精确到1m).AA0 xCCBBy13122518

    注意事项

    本文(双曲线的简单几何性质优质课件(一).ppt)为本站会员(s****8)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开